NASA Jet Propulsion Laboratory California Institute of Technology JPL Home Earth Solar System Stars & Galaxies Science & Technology Bring the Universe to You JPL Email News RSS Podcast Video
Follow this link to skip to the main content

Research Topics List
Earth Sciences
Planetary Sciences
Astrophysics & Space Sciences
Exploration & Observational Systems
Software & Computing Systems
Strategic Technology Directions
Guidelines for Ethics in Research
Laboratories and Facilities
News and Events
ST icon
Office of the Chief Scientist and Chief Technologist

Exploration & Observational Systems

Average Rating: 4 / 5 (14 ratings)
  •   star rating help
    How Do I Rate This?
    The blue stars show the average user rating for this item. To add your own rating, move your cursor over the stars to highlight them in gold, and click to show your rating. One star highlighted is the lowest rating, all five is the highest. Once you have rated an item, your rating is added to the average.
Survivable Systems for Extreme Environments
Survivable Systems for Extreme Environments

Survivable electronic and mechanical systems enable reliable operations under extreme radiation, temperature, pressure, and particulate conditions.

The environments for solar system in-situ exploration missions cover extremes of temperature, pressure, and radiation that far exceed the operational limits of conventional electronics, electronic packaging, thermal control, sensors, actuators, power sources and batteries. In these studies, environments are defined as “extreme” if they present extremes in pressure, temperature, radiation, and chemical or physical corrosion. In addition, certain proposed missions would experience extremes in heat flux and deceleration during their entry, descent and landing phases (EDL), leading to their inclusion as missions in need of technologies for extreme environments.

A space mission environment is considered “extreme” if one or more of the following criteria are met:

  • Heat flux: at atmospheric entry exceeding 1 kW/cm2
  • Hypervelocity impact: higher than 20 km/sec
  • Low temperature: lower than -55°C
  • High temperature: exceeding +125°C
  • Thermal cycling: between temperature extremes outside of the military standard range of -55°C to +125°C
  • High pressures: exceeding 20 bars
  • High radiation: with total ionizing dose (TID) exceeding 300 krad (Si)

Additional extremes include:

  • Deceleration:(g-loading) exceeding 100g
  • Acidic environments: such as the sulfuric acid droplets in Venusian clouds
  • Dusty environments: as experienced on Mars

A summary of planetary destinations and their relevant – and sometimes coupled extreme environments are shown in Table 1. Typically, high temperature and pressure are coupled – e.g., for Venus in-situ and deep entry probe missions to the two gas giants, Jupiter and Saturn. High radiation and low temperature can be also coupled, as experienced by missions to the Jovian system. Low temperatures could be associated with surface missions to the Moon, Mars, Titan, Triton, and comets. Thermal cycling would affect missions where the frequency of the diurnal cycle is relatively short – e.g., for Mars (with a similar cycle to Earth), and for the Moon (with 28 Earth days).

extreme environments table
Table 1: Extremem environments in the solar system

At one extreme, Venus lander missions would need to survive at 460 °C (730 K) temperatures and 90-bar pressures, and must pass through corrosive sulfuric acid clouds during descent (the current technology limits the duration of Venus surface
temperature cycles
Plot comparing the temperature cycles observed for electronics exposed to Venus and Mars surface ambient environments, as well as the military standard temperature cycle used for most space rated electronics.
exploration to only one to two hours). At the other extreme, Titan, Europa, asteroids, comets, and Mars missions require operations in extremely cold temperatures in the range of -180 to -120 °C (~ 90-150 K). For missions to comets or close to the Sun, high-velocity impacts are a real concern, with impact velocities reaching greater than 500 km/second. Investments in technologies for developing these systems and for operations and survivability in extreme environments are continually emerging, and are crucial to the successful development of future NASA missions.

Spacecraft survival in these environments requires not only that mission designers test and model the effects but also that they develop systems solutions, including: Fault tolerance, thermal management, systems integration, and effects of four solar radii (perihelion for a solar-probe mission). For example, missions to Europa must survive radiation levels behind typical shielding thicknesses combined with very low temperatures in the vicinity of -160 °C (~ 110 K). As recommended in the National Research Councils' decadal survey on solar system exploration -- New Frontiers in the Solar System: An Integrated Exploration Strategy, missions require operations in extreme environments at very high and very low temperatures, high and low pressures, corrosive atmospheres, or high radiation.

Current Challenges

Survival in High-Radiation Environments
Improvements in technology for spacecraft survival in high-radiation environments to enable possible missions to Europa, Titan, Earth's moon and mid-Earth-orbit missions are crucial and are in development. Missions to Europa (both lander and orbiter) present a challenge of surviving radiation levels behind typical shielding thicknesses. Significant efforts to meet high-radiation challenges include test, analysis, and mitigation of single-event effects for complex processors and other integrated circuits at high device operating speeds. Total dose testing at high-dose and low-dose rates are being performed at high radiation levels to validate test methods for long-life missions. Tests and analysis of device performance in combined environments, total dose, displacement damage dose, and heavy ion dose must be performed to validate radiation effects models. Methodology used in the development of device performance data and worst-case scenario analysis is being developed to support reliable modeling and a realistic approach to system survival.

Survival in Particulate and Hypervelocity Impact Environments
An important consideration when building survivable systems is the reliability, extended functionality and operation of systems in particulate environments. For example, lunar surface missions must operate in highly abrasive lunar dust, and all missions must penetrate orbital-debris fields. Potential impacts from meteoroids or Earth space debris at velocities in the range of 20–40 km/s short term and > 500 km/s long term (solar probe) are also an issue. JPL has developed a roadmap for impact environments—including debris, comets, and meteoroids—that includes modeling, testing, and shielding, as well as some of the leading models for dust environments.

Electronics and Mechanical Systems for Extreme Temperatures and Pressures Over Wide Temperature Ranges
Previous strategies in this area generally involved isolation of the spacecraft from the environment; however, isolation approaches can add substantially to weight, mass and power. Environmentally tolerant technologies may provide better solutions, particularly in subsystems such as sensors, drilling mechanics, sample acquisition and energy storage. In order to get the maximum science return, JPL is developing electronic and mechanical subsystems designed to survive temperature extremes. The challenges, outlined below, may be categorized into the following areas: low-temperature operations, high-temperature and high-pressure operations, and operations at wide temperature ranges.

Low-Temperature Operation
Several targeted missions and mission classes require the ability to function in extreme cold. These include missions to the Moon, Europa (lander only), deep-space missions (astrophysics and planet finding), and any mission requiring sample acquisition as well as actuators or transmitters outside any interplanetary spacecraft. Many of the currently available electronics will not perform in extremely cold environments. Additionally, many metals undergo brittle phase transitions with abrupt changes in properties, which are not well understood in these extreme cold environments. Other performance issues at cold temperatures include the following: The effects of combined low temperature and radiation; the reliability issues of field-effect transistors due to hot carriers; freeze-out of advanced complementary metal-oxide semiconductors at very cold temperatures; severe single-event effects at cold temperatures for silicon germanium semiconductors; and battery operations at low temperatures.

A distributed motor controller for brushless actuators for operation from –130 to +85 °C for more than 2000 cycles.

Low-temperature survivability is required for surface missions to Titan (-180 degrees Centigrade), Europa (-220 degrees Centigrade), Ganymede (-200 degrees Centigrade) and comets. Also, the Earth's Moon's equatorial regions experience wide temperature swings from -180 degrees Centigrade to +130 degrees Centigrade during the lunar day/night cycle, and the sustained temperature at the shadowed regions of lunar poles can be as low as -230 degrees Centigrade. Mars diurnal temperature changes from about -120 degrees Centigrade to +20 degrees Centigrade. In addition, in considering a baseline concept for a proposed mission such as the Europa Jupiter System Mission (EJSM) with a mission life of 10 years, the radiation environment is estimated at 2.9 Mega-rad total ionizing doses (TID) behind 100 ml. thick aluminum.

Proposals are being developed for technologies that enable NASA to achieve scientific success and discoveries through long duration missions to low-temperature and wide-temperature range environments. Technologies of interest include:

  • low-temperature-resistant high strength-weight textiles for landing systems (parachutes, air bags),
  • low-power and wide-operating-temperature radiation-tolerant /radiation hardened RF electronics,
  • radiation-tolerant/radiation-hardened low-power/ultra-low-power wide-operating-temperature low-noise mixed-signal electronics for space-borne systems such as guidance and navigation avionics and instruments
  • low-temperature radiation-tolerant/radiation-hardened power electronics
  • low-temperature radiation-tolerant/radiation-hardened high-speed fiber optic transceivers
  • low-temperature and thermal-cycle-resistant radiation-tolerant/radiation-hardened electronic packaging (including shielding, passives, connectors, wiring harness and materials used in advanced electronics assembly)
  • low to medium power actuators, gear boxes, lubricants and energy storage sources capable of operating across an ultra-wide temperature range from -230 degrees Centigrade to 200 degrees Centigrade
  • Computer Aided Design (CAD) tools for modeling and predicting the electrical performance, reliability, and life cycle for wide-temperature electronic/electro-mechanical systems and components
MSL heat shield
This color full-resolution image showing the heat shield of NASA's Curiosity rover was obtained during descent to the surface of Mars on Aug. 5 PDT (Aug. 6 EDT). The image was obtained by the Mars Descent Imager instrument known as MARDI and shows the 15-foot (4.5-meter) diameter heat shield when it was about 50 feet (16 meters) from the spacecraft.
Research needs to continue to demonstrate technical feasibility (Phase I) and show a path toward a hardware/software demonstration (Phase II), and when possible, deliver a demonstration unit for functional and environmental testing at the completion of the Phase II contract.

High-temperature and high-pressure operation
To achieve successful long-term missions, previous Venus landers employed high-temperature pressure vessels with thermally protected electronics, which had a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (485 °C, ~ 760 K) and pressures (90 bar) of the Venus ground ambient could significantly increase the science return of future missions. Toward that end, current work continues to develop an innovative sensor preamplifier capable of working in the Venus ground ambient and to be designed using commercial components (thermionic vacuum and solid-state devices; wide-band-gap, thick-film resistors; high-temperature ceramic capacitors; and monometallic interfaces). To identify commercial components and electronic packaging materials capable of operation within the specified environment, a series of active devices, passive components, and packaging materials was screened for operability at 500 °C (~ 775 K), targeting a tenfold increase in mission lifetime. The technology developed could also be used for Jupiter deep probes, which reach pressures of up to 100 bar at temperatures of 450 °C (~ 725 K).

Survivability and operation of electronic systems in extreme environments are critical to the success of future NASA missions. Mission requirements for planets such as Venus cover the extremes of the temperature spectrum, greatly exceeding the rated limits of operation and survival of current commercially available military and space-rated electronics, electronic packaging and sensors. In addition, distributed electronics into future missions are rapidly being developed.

Operations at wide temperature ranges
Both lunar and Mars missions involve extreme temperature cycling. In the case of Mars, temperatures may vary from -130 to +20 °C (143-293 K), with a cycle approximately every 25 hours.

For an extended mission, this translates into thousands of cycles. Lunar extremes are even greater (-230 to +130 °C, ~ 40-400 K) but with a cycle every month. Such extreme cases involve not only extreme temperatures but also fatigue issues not generally encountered in commercial, military, or space applications.

Reliability of Systems for Extended Lifetimes
Survivable systems need to have extensive reliability for extended lifetimes. Electronics are generally not designed to be functional for more than 10 years, unless specially fabricated for long life. Long-life systems ultimately need a 20-year (or greater) lifetime and are critical for extended lunar-stay missions, deep- and interstellar-space missions, and some Earth-orbiting missions.

Space Radiation Modeling
The modeling of radiation environments is another important aspect of extreme environments technology. Extensive models have been developed for both the Jovian and Saturnian environments. Measurements of the high-energy, omnidirectional electron environment were used to develop a new model of Jupiter’s trapped electron radiation in the Jovian equatorial plane; this omnidirectional equatorial model was combined with components of the original Divine model of Jovian electron radiation to yield estimates of the out-of-plane radiation environment, referred to as the Galileo Interim Radiation Electron (GIRE) model. The GIRE model was then used to calculate a proposed Europa mission dose for an average and a 1-sigma worst-case scenario. While work remains to be done, the GIRE model represents a significant step forward in the study of the Jovian radiation environment, and provides a valuable tool for estimating and designing for that environment for future space missions.

Saturn's radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense; Saturn's famous particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of Saturn's radiation environment for mission design, with the exception of the (1990) Divine study that used published data from several charged-particle experiments from several flybys of Saturn to generate numerical models for the electron and proton radiation belts. However, Divine never formally developed a computer program that could be used for general mission analyses.

JPL has attempted to fill that void by developing the Saturn Radiation Model (SATRAD), which is a software version of the Divine model that can be used as a design tool for possible future missions to Saturn. Extension and refinement of these models are critical to future missions to Europa and Titan as well as for extended Jovian missions.

radiation modeling and testing
Left Image: Contour plot of >= 10 MeV electron integral fluxes at Jupiter. Coordinate system used is jovi-centric. GIRE2 model based on the Divine/GIRE models. Meridian is for System III 110 ° W.
Right Image: Armored Spacecraft Workers place the special radiation vault for NASA's Juno spacecraft onto the propulsion module. Juno's radiation vault has titanium walls to protect the spacecraft's electronic brain and heart from Jupiter's harsh radiation environment. Credit: NASA/Lockheed Martin


Andrew Shapiro - Management Contact and Electronics Packaging
Phone: 818.393.7311

Henry Garrett - Space Radiation Environment
Phone: 818.354.2644

Elizabeth Kolawa, Program Manager, Instrument Electronics Packaging: High-Temperature Environments
Phone: 818-393-2593

Steve McClure, Supervisor, Radiation Effects
Phone: 818.269.5426

Jason Heidecker - Design-in-reliability Matlab
Phone: 818.393.7567

Chuck Barnes, Deputy Project Manager, Radiation Effects and Analysis
Phone: 818.354.4467

Linda del Castillo - High Temperature Chamber
Phone: 818.393.0418


Site Manager:  Brian Knosp
Webmasters:  Cornell Lewis, Maryia Davis

JPL Clearance:  CL#08-4147