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Abstract:

The process of inferring the true state of a remotely sensed scene from observed spectra is called a retrieval. Typical 
retrieval methods include least-squares fitting and application of Bayes' Rule, which uses the formula for conditional 
probability to obtain the probability distribution of the true state given the observed data. The Bayes retrievals are preferred
because, in principal, they yield the full distribution of the state rather than simple point estimates and thus includes 
uncertainty information. 

In practice, the most often used algorithm for Bayes retrievals (Optimal Estimation, OE) assumes all distributions to be 
Gaussian. A more modern alternative is Markov-chain Monte Carlo (MCMC), but it is very computationally intensive and 
not generally practical in operational settings. While there are many approaches to increasing MCMC speed and efficiency, 
none has so far achieved the kind of improvements required for operational deployment at NASA.

In this project, we explore new ways to make MCMC algorithms faster using the Surface Biology and Geology designated 
observable mission concept's retrieval as a guiding example. We bring advances from the Uncertainty Quantification 
domain to bear on this problem starting with assessments of 1) three different simple emulators (statistical models that 
approximate complex physical calculations) and two different dimension reduction techniques (transformations of the input 
data that reduce their size while sacrificing minimal information). 

Tutorial Introduction



Context: Massive remote sensing data sets deliver detailed, local information on global scales, allowing scientists to test 
complex theories across multiple scales in time and space. To do so requires that retrievals capture complex non-Gaussian 
nonlinear behaviors and dependencies, and accurately quantify uncertainties in those estimates. 

Advancement over current state-of-the-art: The traditional implementation of Bayes' retrievals is Optimal Estimation (OE) 
[1]. OE assumes that all the distributions involved in the formula, 

are Gaussian. The Gaussian assumption does not necessarily hold, is rarely if ever checked, and if it fails, can lead to     
incorrect inferences and science conclusions. MCMC [2] methods do not require any assumption about the form of the 
distributions and are thus more robust. The downside is that MCMC is very slow.

Relevance to NASA and JPL:  Makes JPL more competitive in winning new missions by 

1) increasing the speed, flexibility, and efficiency of probabilistic retrieval algorithms used in Earth Science 

2) demonstrating the value of new sensor technologies by exploiting more of the information in their data and  
providing richer probabilistic descriptions of uncertainty.

Problem Description



a) Observing system/experimental framework: 

b) Innovation

Methodology
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a) Completed experiments: 
• comparing linear emulators for 

different error distributions

• comparing PCA vs LIS for dimension 
reduction for different error 
distributions

• first version of MCMC 
implementation complete

b) Significance: LASSO regression 
+ LIS dimension reduction is 
most efficient among choices 
tested.

c) Next steps: 
• embed forward model 

emulator+LIS into MCMC,
• timing studies to compare MCMC 

with linear emulator+LIS against 
ordinary MCMC and OE.

Results
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