

Virtual Research Presentation Conference

Alternative Methods for Acceleration of Wavefront Control Computation for Large Space Telescopes

Principal Investigator: Eric Cady (383A) Co-Is: Prof. Kerri Cahoy (MIT), Prof. Ewan Douglas (U of A) Program: SURP

Assigned Presentation #SP20011

Tutorial Introduction

Coronagraphs are optical instruments designed to look for very faint objects right next to brighter ones, such as exoplanets next to their host stars

- They use a series of optical masks to selectively filter out the starlight
- Their performance will be degraded by misalignments or imperfections in optical surfaces

Wavefront sensing and control (WFSC) systems measure the effect of those imperfections and move deformable mirrors (DMs) to cancel those effects out.

Without WFSC, most coronagraphs in real instrument systems would be unable to see exoplanets.

Problem Description

Context: HabEx and LUVOIR are two of the four candidate large missions proposed to the 2020 Decadal Survey in Astronomy and Astrophysics as follow-ons to JWST

- Both have coronagraphs proposed for imaging exoplanets, with WFSC systems
- Both are baselining on-board computation for WFSC.
- Both are expecting to use larger-format DMs than current state-of-the-art (SOA) instruments

The challenge:

- WFSC computation and storage costs scale steeply with DM size (N⁴ - N⁶ depending on algorithm choices)
- Suitable rad-hard flight processors do not seem to be on track to scale up at this rate

	Roman Space Telescope (Roman)	Habitable Exoplanet Observer (HabEx)	Large UV-Optical-Infrared Surveyor (LUVOIR)		
Instrument	CGI	HCG	ECLIPS		
			Arabianest Ottamost PFM OxPA OXPA FFM OXPA		
Status	In development at JPL (Phase C)	Proposed	Proposed		
WFSC computation baseline	Ground-in-the-loop (was on- board rad-hard avionics)	On-board rad-hard avionics	On-board rad-hard avionics		
Deformable mirror size (N×N)	2 48x48 DMs	2 64x64 DMs	2 128x128 DMs		
Computation/storage cost relative to SOA N ⁴ N ⁶)	1	3.2 - 5.6×	50.6 - 359.6×		

The problem: If the processing capability of space-qualified hardware does not advance faster than the increase in desired deformable mirror actuator counts, these observatories may have their high-contrast science return limited by processing overheads of wavefront control.

Methodology

Our proposal: we will do a trade study between a baseline case (on-board rad-hard processing and storage) and three alternatives with the potential to offer higher performance:

- 1. Evaluate the use of rad-tolerant processors developed and available for commercial applications for use within an instrument for single-purpose WFSC computation.
 - These would be in addition to standard rad-hard processors for critical flight systems.
- 2. Evaluate the use of ground-in-the-loop computation, where the computationally-intensive parts are done within the Ground System and data is passed back and forth.
 - Note: since the start of this SURP, the CGI instrument on Roman has moved from an onboard rad-hard approach to computation to a ground-in-the-loop approach.
- 3. Evaluate the use of a dedicated co-flying small spacecraft with rad-tolerant COTS processors for offloading computational needs

This work was planned to span 2 years, with the first year focused primarily on the baseline and Option #1, and the second year primarily on Options #2 and #3.

Results

Year 1 work:

- Identify trade study Musts and Wants to permit comparison of disparate WFSC architectures
- Perform literature and community research to identify key wavefront sensing and control algorithms
- Evaluate computational complexity of each of the key algorithms
- Perform literature and community research to identify the computational capability of key processors that are candidates for future flight projects (both rad-hard and radtolerant COTS)
 - Div 51x personnel provided assistance with this
- Build tools to parametrically evaluate performance for different use-cases (e.g. HabEx, LUVOIR) as a function of algorithm and processing architecture

With these tools we can combine the processor and memory capability with the computational complexity of the algorithms for an example case, and look at the time required to reach a nominal benchmark performance level

Dracaser	Clock Speed	Core	Carac	Core	Dedicated FPU	External Memory Interface/Controller	
Processor	(MHz)	Architecture	Cores	Bits	with MAC		
	166	PowerPC	4	Yes, compiler-			
BAE KAD3343	400	e5500	4	04	dependent		
	200	DoworDC 750	1	22	Yes, compiler-	Darallal SDAM	
BAE KAD750	200	PowerPC 750	Т	32	dependent	Parallel SRAIVI	
Vorago	100	ARM Cortex-	1	22	Voc	Parallel SRAM w/	
VA41620	100	M4F	T	52	res	DMA Controller	
SnapDragon	2420	ARM Cortex-	x- 4/8	64	Voc	LPDDR4X at 2133 MHz	
855	2420	A76			res		
Renesas	600	ARM Cortex- R4F 1	22	Vac	Parallel SRAM w/		
Cortex-R4F	600		1	32	res	DMA Controller	
TI Cortex-R5F	200	ARM Cortex-	1	22	Vec	Parallel SRAM w/	
(TMS570)	500	R5F	1	52	res	DMA Controller	
ST Stollar PE2	400	ARM Cortex-	1/6	27	No	Darallal SPAM	
ST Stellar KSZ	400	R52	4/0	52	INO	Parallel SKAIVI	

				Computation Time (hours)						
				Rad-Hard			Rad-Tolerant COTS			
_				BAE RAD5545	BAE RAD750	Vorago VA41620	SnapDragon 855	Renesas Cortex-R4F	TI Cortex-R5F (TMS570)	ST Stellar Cortex-R52
Algorithm		Precomputation	Jacobian precomputation	185.76	497.99	820.22	71.94	181.81	248.80	192.24
			EFC gain precomputation	94.60	253.61	417.71	36.64	92.59	126.70	97.90
		Estimation Step, per iteration	Pairwise probing	0.05	0.14	0.23	0.02	0.05	0.07	0.05
			Self-coherent camera (SCC)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	orithm	Control step, per iteration	Electric field conjugation (EFC)	0.22	0.60	0.99	0.09	0.22	0.30	0.23
	Alg		EFC (with precomputed gain)	0.01	0.04	0.06	0.01	0.01	0.02	0.01
			Jacobian update with E-M (adaptive)	0.27	0.71	1.17	0.10	0.26	0.36	0.27
			Linear dark field control (LDFC)	0.21	0.57	0.95	0.08	0.21	0.29	0.22
	wantenance	EFC with extended Kalman filter	0.22	0.60	0.99	0.09	0.22	0.30	0.23	

Publications and References

Computational Requirements of Focal Plane Algorithms for High Contrast Imaging in Space Telescopes [in prep for JATIS]

