

Virtual Research Presentation Conference

A Quadrature Bitstream Integration $CT\Delta \Sigma$ Phasemeter

Principal Investigator: Pekka Kangaslahti (386F) Co-Is: Michael Flynn, Matthew Belz (University of Michigan) Program: SURP

Assigned Presentation # RPC-213 SP20024

Tutorial Introduction

Abstract

Phase measurements are critical for accurate detection of gravitational waves using heterodyne interferometry. We present a phasemeter employing a quadrature bitstream integration technique using a continuous time sigma delta modulator (QBI-CT $\Delta\Sigma$). This approach results in less than 0.4° phase error over a 360° input phase sweep and occupies 0.094 mm².

Problem Description

- a) LISA mission planned to launch in the 2030's
- b) Phasemeter is a critical part for gravitational wave detection
- c) Current solutions use power-hungry FPGAs
- d) ASIC design focused only on phase measurement requiring only 111 μW

Research Presentation Conference 2020

· Integration is performed in the digital domain

Research Presentation Conference 2020

Results

Chip micrograph with an active area of 0.094mm²

Results Comparison

	This Work	ADI AD5933	JSSC '20 [2]	ISSCC'18 [1]	TI-AFE4300
Technology [nm]	40	-	65	130	-
Supply [V]	1	3.3	0.5	0.6	3
Phase Error [°]	<0.19° (3°-9°) <0.45° (0°-360°)	A<0.8° (0°-7°) A<1.05° (0°-360°)	<0.4° (3°-8°)	-	<0.69°
Power[µW]	111.6	33000	9.26	0.05 °7.05	2910
Energy/Reading [nJ]	27.7	-	^D 900	^E 1.41	-
Area [mm²]	0.094	-	4.83	0.0039	-
SNDR [dB]	68.88	60	^B 44.64	50.3	-
Frequency (kHz)	4	1-100	20	0.02-5	8/16/32/64
AEstimated from datashe	et ^B SFDR	^C Includes bias	& clock power	D10 Hz output filter	E5 kHz output

Publications and References

[1] M. El Ansary *et al.*, "50nW 5kHz-BW opamp-less ΔΣ impedance analyzer for brain neurochemistry monitoring," in *2018 IEEE International Solid - State Circuits Conference - (ISSCC)*, Feb. 2018, pp. 288–290.

[2] K. Kim, J.-H. Kim, S. Gweon, M. Kim, and H.-J. Yoo, "A 0.5-V Sub-10- μ W 15.28-m Ω/\sqrt{Hz} Bio-Impedance Sensor IC With Sub-1° Phase Error," *IEEE Journal of Solid-State Circuits*, vol. 55, no. 8, pp. 2161–2173, Aug. 2020.