Building a New Planet Formation Model for Characterizing Habitable Rocky Planets

Principal Investigator: Yasuhiro Hasegawa (326); Co-Investigators: Brad Hansen (UCLA), Mathew Yu (UCLA)

Program: FY21 SURP

Strategic Focus Area: Extra-solar planets and star and planetary formation

Stellar magnetic fields produce a trap for (proto)planets migrating inward from the outer disk at the transition from the inward to outward migration

California Institute of Technology Pasadena. California

Copyright 2021. All rights reserved

Reference: Petigura at al 2018, ApJ, 155, 89

PI/Task Mgr Contact Email: Yasuhiro.Hasegawa@jpl.nasa.gov

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

Left: the sharp rise in the surface density is caused by stellar magnetic fields

Right: the outward migration becomes possible due to the positive gradient of the surface density

Left: Trajectories of trapped planets. The final location of planets is determined by dropping out from their host traps

Right: The occurrence rate predicted from our simulation results