
Objective: Determine the plausibility of finding volatiles 
in lunar pits and caves. 
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Results:
• Multiple-scattered IR radiation is the most important energy 

source within high latitude pits (Fig. 2)
• Pits with more enclosed geometries have more stable 

temperatures (Fig. 3)
• Doubly shadowed pits and caves are much colder than pit-cave 

systems outside existing PSRs (Fig. 4)
• Water ice is most stable at very high latitudes (>88°) (Fig. 5)

Significance/Benefits to JPL and NASA:
• We determined that missions aiming to sample lunar volatiles 

should target craters rather than pits or caves, because 
craters are better cold traps.

• We strengthened the relationship between CU Boulder and JPL 
and engaged experts in lunar polar volatiles at CU Boulder

Approach
• Created and validated a 3D 

thermophysical model
• Applied the model to a range of pit 

geometries
• Explored variation in temperature with 

geometry and latitude
• Created a 3D volatile transport model
• Used coupled thermal and volatile 

model to assess ice stability within 
lunar pits

Figure 2 Local noon surface temperatures for pit-cave system (left) and a fracture system (right) both 
at 80° S latitude. Only facets on the equator-facing rim see direct insolation. The remaining interior 
facets are in shadow where IR multiple-scattering dominates.

Figure 3 Mean temperature vs time for a cylindrical pit (purple), an attached 
cave (blue), an east-west fracture (green), and a north-south fracture 
(yellow) at 80° S latitude. Shaded regions show min and max temperatures.

Figure 4 Mean temperatures over a lunar year at latitudes from 80° S to 90° S within a cylindrical pit 
(right column) and its attached cave (left column) for both a standard pit-cave system (top row) and a 
doubly shadowed pit-cave system (bottom row). Note the y-axis scale varies between subfigures.

Figure 5 Ice loss rate vs latitude for a doubly shadowed pit-cave. Net 
ice loss rate across all ice-bearing facets within the pit-cave system. 
Scatter is due to the spatial resolution of the surface geometry.
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Background:
• Lunar volatiles are high priority targets for both their science and 

resource value
• Locations that store volatiles in high abundances would make the 

best mission targets
• Pits are plentiful on the Moon [1], and previous work suggested 

that high latitude pits could cold trap volatiles and protect them 
from destruction [e.g. 2] but that had not been modeled

Figure 1 Examples of lunar 
pits. Figure credit [1].


