

Planar Multi-Pixel Heterodyne Array Architecture Suitable for Large Arrays

Principal Investigator: Goutam Chattopadhyay (386); Co-Investigators: Imran Mehdi (386), Jacob Kooi (386), Darren Hayton (386), Jonathan Kawamura (386), Bruce Bumble (389), Sven van Berkel (386)

> **Program: FY23 R&TD Strategic Initiative** Strategic Focus Area: Long-Wavelength Detectors

Objective:

To develop a novel submillimeter-wave heterodyne detection architecture, suitable to realize large-format arrays that contain hundreds of pixels integrated in a highly compact and efficient instrument package. By:

- (1) Using a quasi-optical distribution of LO power, without making use of lossy beam splitters or waveguide networks
- (2) Developing an modular and low-loss planar integration architecture.

Approach and Results:

- Planar HEB mixer array integrated on silicon micromachined packaging. Allows for a dense integration of pixels & short RF WG path.
- **Two arrays of lenses** couple the RF and LO signal from the front and back respectively. No beamsplitter necessary (that typically throws away 90% of LO power)
- Balanced HEB architecture gives improved common mode and spectral image rejection.

Figure 1. Schematic of the basic architecture of the multi-pixel planar terahertz heterodyne receiver array and the way forward to large-format arrays.

- 1.95 THz LO chain assembled providing 40uW output power
- Transmit array configuration assembled for LO coupling validation
- Lens patterns and power measured with LHe-cooled bolometer

Figure 2. Planar integration of receiver front-end, fabricated using silicon micromachining technology. The wafer stack contains the lens antenna feeds, hybrid coupler and balanced HEB mixers.

- Custom SiGe cryo-LNA designed and tested that can be integrated in large format arrays.
- HEBs, designed and fabricated at MDL, are carefully selected based on normal resistance and critical current.

Significant Benefit to JPL and NASA: Large-format heterodyne arrays would facilitate more and better science in future planetary and astrophysics missions, thanks to a potentially orders of magnitude improvement in sensitivity and/or mapping speed. The emphasis under initiative is to mature existing technologies to a stage where they can help bridge gaps in technological needs for instruments that can be proposed for future flight missions.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#5669 RPC/JPL Task Number: R20024 Copyright 2023. All rights reserved.

PI/Task Mgr Contact Information: Email: Goutam.Chattopadhyay@jpl.nasa.gov