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Figure 1. QGG for Earth gravity measurements

Figure 3. 1D Raman cooling demonstration, 
adapted from Ref [1]. (a) Dashed line: excitation 
profile of 30µs pulses tuned to +-4vR. Solid line: 
velocity distribution after 136 repetitions. (b) Time 
dependence of the width of the cooled peak.

Figure 5. Pictures of the distribution part of the 
laser optics system, and the atomic physics 
package (doubleMOT) with supporting optics.
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Figure 6. Phase extraction investigation. Top: 
simulated spatial distribution of atoms at the 
interferometer output (left). Each atom emitting 
isotropic rays imaged on a camera (right). Bottom: 
phase extraction and its error. Preliminary results 
show deviation from expected phase error.

Significance/Benefits to JPL and NASA:
• JPL has been leading in space quantum sensor technology and 

applications.
• This SRTD will position JPL in a competitive and competent 

position to capture the next mission opportunity deploying the first 
high-performance quantum sensor measurement system in space, 
such as QGG for mass change.

Objectives:
• Generate high-flux ultracold atoms for quantum sensing 

applications, such as quantum gravity gradiometer (QGG) for Earth 
mass change missions (Fig. 1)

• Target: 108 Cs atoms at 1nK
• SWaP optimized for space missions

Background:
• Quantum sensing is part of the National Quantum Initiative, and 

NASA’s quantum initiative.
• Spaceborne QGG is identified as the most promising instrument 

development to yield impactful result.
• QGG performance is limited by number of ultracold atoms. 

Required atom number: 108, state-of-the-art (CAL): 105
• Conventional method doesn’t scale, need new approaches (Fig. 2)

Approaches and Results:
• Raman cooling is promising (Fig. 3):

• 3D simulations show 1% efficiency feasible after 1000 cooling 
cycles (Fig. 4)

• Critical parameter identified: the pulse duration profile
• Setting up lab apparatus (Fig. 5)
• Investigating phase readout noise of atom interferometers (Fig. 6)

Figure 2. Paths towards an ultra high flux atom source
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Figure 4. Fraction of atoms in 1 nK vs cooling cycles 
(number of pulses). Insets show population change after 
the first cooling cycle, from original (blue) thermal 
distribution (3 µK) to peaked (orange) distribution.
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