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Significance/Benefits to JPL and NASA

• NASA is beginning to invest resources in ground-based radial velocity (RV) surveys to support its space-based 
search for habitable exoplanets (NASA ExEP Science Gap List).

• Stellar activity is considered to be the largest source of noise in EPRV instrument teams’ RV error budgets.
• Improvements the characterization and quantification of stellar RV jitter in EPRVs will enhance stellar activity 

mitigation algorithms, boosting the efficiency of upcoming missions like JPL’s HabEx, which directly image habitable 
exoplanets, by ~50% (R. Morgan, EPRV working group report), improving our chance of detecting biosignatures.

• Establishing the data requirements for neural network approaches to disentangle stellar noise sources will help inform 
future EPRV survey designs on the best way to allocate limited telescope time, and help NASA decide the amount of 
observing time to be purchased on telescopes in order to meet their EPRV goals.
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Strategic Focus Area: Extra-solar planets and star and planetary formation

Objectives
1. Characterizing stellar noise components in 
terms of their pixel-by-pixel effects on the 
spectrum, using DL. 

2. Quantifying the contribution of each stellar 
RV noise component to the RV error in each 
spectrum down to, or below, instrumental 
noise levels, using DL.

3. Determining the data requirements of 
neural networks in terms of constraints on 
SNR, resolution, cadence, and number of 
spectra to effectively train a neural network 
to characterize and/or quantify each 
component of stellar RV jitter.

Figure 1. Left: Illustration of two spatially correlated sources of stellar RV jitter: 
convective blueshift inhibition from strong magnetic fields and rotational RV imbalance 
caused by missing flux in star spots. Right: Plot of the RV signals versus rotational 
phase corresponding to convective blueshift inhibition and missing flux.

Background
● State-of-the art methods use cross-correlation function (CCF) or search for activity-

sensitive lines [1],[2],[3],[4]. 
● CCF studies [1],[2] cannot account for differences in responses of individual to 

stellar activity. 
● Activity-sensitive line searches focus on line depth changes [3],[4], rather than 

asymmetric line-shape changes which are more highly correlated with stellar RV 
jitter [2]. 

● Our method aims to globally characterize all such changes in the spectrum, by use 
of a large quantity of high quality input data (34450 HARPS-N spectra over 3 years) 
and by harnessing the power of DL methods to probe the effects of stellar activity on 
the spectrum at unprecedented detail.

Objectives
Datasets and Preprocessing (Figure 2-B.1): Training data is 3 years of HARPS-N sun-as-a-star spectra 
(34450 spectra) from 2015 to 2018. The RV corrections are provided by the HARPS-N team. Alpha-shape 
Fitting to Spectrum (AFS) algorithm [2] implementation in the RvSpectML package is used for continuum 
normalizations. Interpolation uses a sinc kernel, preventing the introduction of noise due to intra-pixel 
sensitivity. 

Ancillary Datasets (Figure 2-B.1): (1) Helioseismic and Magnetic Imager (HMI) onboard the Solar 
Dynamics Observatory (SDO) provides near single-granule spatial resolution photometric maps of the solar 
surface. These data were reduced using the SolAster Package to quantify solar activity conditions.  (2) 
Observing conditions for each observation were provided by the HARPS-N team. In tests of our neural 
network, we use data such as the “sun-as-a-start” RV model, the convective and photometric velocity 
components, and more as targets for the network during training.

Figure-2: Technical Approach Flow Diagram

Figure 4: Each spectral line from HARPS-N spectra was input to a CNN targeting 
an injected planetary RV (red) and separately the “sun-as-a-star” RV variation 

(purple). The top 100 top performing lines for each trial are highlighted.

Figure 3: Various stellar activity components (from the ancillary dataset) are correlated with the spectral lines in each cluster. The clusters 
in this figure are derived by applying dbscan on four statistical features. The correlations of the clustered lines with the stellar activity 
signals seem relatively strong in some clusters.

Clustering (Figure 1-F): HARPS-N spectral lines are empirically generated using the public 
RvLineList package. In order to measure the change in each line over time and identify lines with 
similar changes, a feature extraction step followed by clustering is performed. The feature 
extraction step involves, for each line,  deriving the mean, standard deviation, skew and kurtosis 
for the pixels associated with each line. Then, the mean and standard deviation are derived 
across time, as features, for each line to quantify the change in each line over time. In order to 
characterize and group together similar manifestations of stellar noise, DBSCAN clustering 
algorithm was used. The clustering results are validated by correlating the clustered lines with 
stellar activity signals from the ancillary data. The validation results, depicted in Figure 3, indicate 
that the features affect the quality of clustering. So, 

Deep Learning (Figure 1-C): Individual spectral 
lines are subsetted from HARPS-N using a line 
mask (G2.Espresso). CNNs are trained using a 
single spectral line as input (15 x ~35K) and the 
time aligned ancillary (photometric velocity, 
convective, etc.) value as the target. This approach 
results in ~5k x N trained CNNs (~5k spectral lines; 
N=23 SolAster features). We first demonstrated this 
line-by-line CNN concept by targeting injected RVs, 
an output of the preprocessing pipeline; this 
highlights lines that are insensitive to stellar 
variability (low RMSE) and lines that are sensitive 
to stellar variability (high RMSE). The CNNs’ 
targets are changed to “sun-as-a-star” RV 
components, providing a more direct way to 
understand what lines are more, or less, sensitive 
to a given type of stellar activity (Figure 4). Larger 
CNNs are trained on different subsets of multi-line 
inputs to help understand how the removal of lines 
sensitive to stellar activity affect our ability to 
identify planetary RVs (Figure 5). 

Figure-5: Performance results of the same CNN architecture trained on different subsets of lines (inputs) targeting injected planetary RVs. The 
removal of lines sensitive to stellar activity (second boxplot from the left) results in ~25% lines dropped from the top 100 lines (left most boxplot). 
This removal of lines appears to improve the average performance of the CNNs.
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