

FY23 Topic Areas Research and Technology Development (TRTD)

Determining Atmospheric Species Abundances Using Multi-Frequency Radio Signal Absorption

Principal Investigator: Panagiotis Vergados (335)

Co-Investigators: Tatiana Bocanegra-Bahamon (335), Alexander Akins (386), Kuo-Nung Wang (335), Chi O. Ao (335), Sami W. Asmar (910), Robert A. Preston (330)

Strategic Focus Area: Planetary Atmospheres

BACKGROUND	OBJECTIVES
The Planetary Sciences Decadal Survey (PSDS) 2023-2032 prioritized the	Develop a new radio science method to simultaneously retrieve vertical
	distributions of temperature and major atmospheric trace gases/aerosols in
	Uranus (CH ₄ and H ₂ S). Under the recent announcement of a UOP Flagship
	Mission, and compared to the state-of-the-art (both at JPL and outside JPL),
ionosphere at 2,000 and 3,500 km extending up to 10,000 km (Tyler et al.,	our work aims to achieve:
1986); (b) narrow eccentric sharped-edged rings in-between an extensive	
sheet of tenuous dusty material, and (c) tropopause located at 0.1 bar	1. 4x better atmospheric penetration at Uranus than what Vayager-2 has
exhibiting small-scale vertical structures (Lindal et al., 1987). The UOP	achieved, down to ~9 bar pressure level (as opposed to 2.3 bar).

mission can provide orders of magnitude improvement to this observing record, but this improvement is contingent on the chosen RO experiment design. **PSDS 2023-2032 explicitly identified ROs as key observables** to answer questions about the variability and thermal structure of Uranus' thermosphere, ionosphere, and the mechanisms that maintain its ring structure, their eccentricity and inclination. The UOP mission will conduct multi-year orbital tours and deliver an in-situ probe, enabling hundreds of ROs over a range of observing geometries and ring opening angles.

- **2. 5x better** vertical resolution of atmospheric and trace gases profiling using Ka-band than what Voyager-2 has achieved.
- Successful sampling of H₂S vertical stratification that was not captured by Voyager-2 RO experiment.
- **4. Design of cross-link ROs** in a Small Satellite (SmallSat) constellation experiment for Uranus atmospheric monitoring.

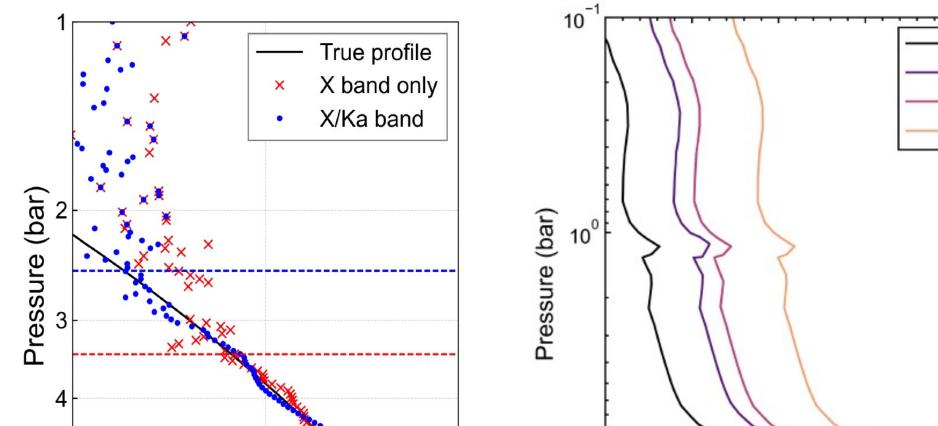
METHODOLOGY & TECHNICAL APPROACH

STEP 1: We used our end-to-end RO simulation software to generate phase and amplitude measurements for Uranus atmospheric conditions at UFH, L, X, S, and Ka-band frequencies

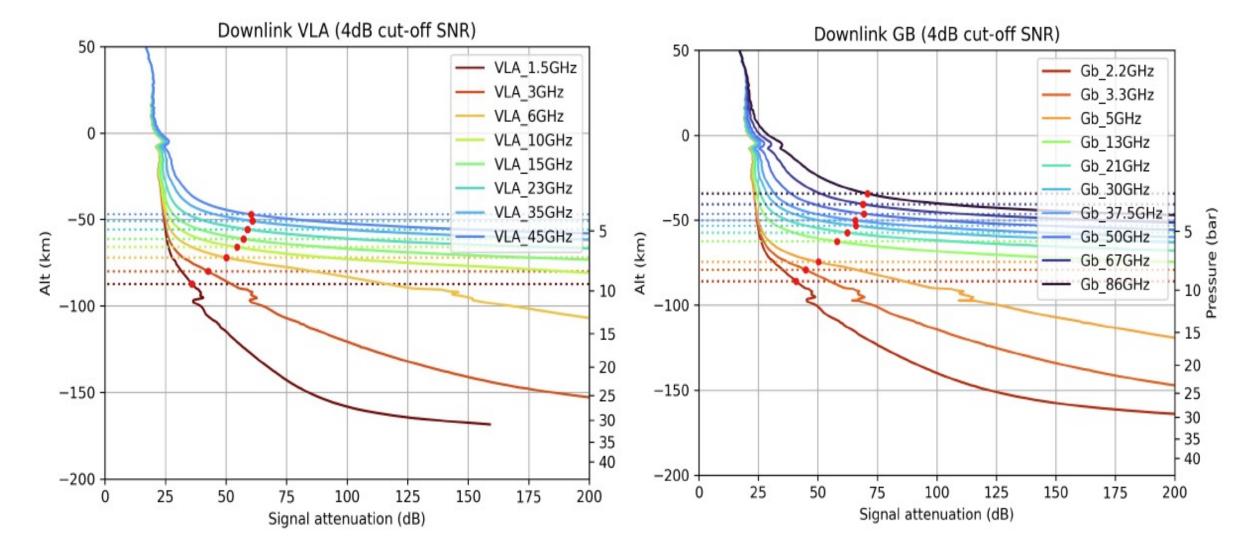
STEP 2: Catalogued uplink/downlink power of multiple radio telescopes, along with their antenna gain. We used data from STEP 1 to retrieve attenuation profiles as function of pressure level with a 4dB cut-off SNR

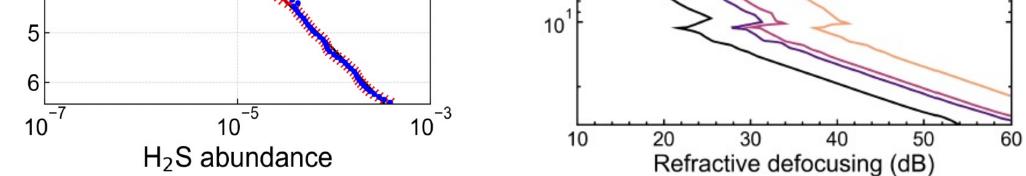
STEP 3: Used results from STEP 1 to retrieve absorptivity profiles at X/Ka-band as function of pressure level to estimate H₂S abundances from 1 and 7 bar

STEP 4: Quantified the defocusing effect at different spacecraft distances from Uranus over the entire radio frequency range selected


1.2 R_U

 $5 R_U$


 $7 R_U$


30 R_U

RESULTS

Low-frequency downlinks to phased VLA and GBT reach 9-10 bar, resolving H₂S/NH₃ cloud base

Figure 1. (Left) Simulated H_2S in Uranus atmosphere retrieval from absorptivity RO data. (Right) Refractive defocusing attenuation predicted for several spacecraft distances from Uranus.

Figure 2. Radio occultation link attenuation as a function of altitude/pressure and frequency from 1.5 GHz up to 45 GHz over the Very Large Array (left) and Green Bank Telescope (right).

SIGNIFICANCE TO NASA AND JPL

- Enable development of RO experiments for the Uranus Flagship mission directly addressing the Planetary Science Decadal Survey
- Expand JPL's Interplanetary Network Directorate (IND) (9x) applications, and give JPL a strong competitive edge for the Uranus Flagship mission.
- Define needed RO mission hardware additions, as identified in Planetary Sciences Decadal Survey 2023-2032, beyond the currently used radio hardware.

PUBLICATIONS	REFERENCES
Akins, A., Bocanegra-Bahamon, T., Wang, KN., Vergados, P., Ao, C., Asmar, S., Preston, R. A. (2023), Approaches for Retrieving Sulfur Species Abundances from Dual X–Ka-band Radio	Lindal et al. (1987), The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2, <i>J. Geophys. Res.: Space Physics</i> , 92 , pp. 14987-15001
Occultations of Venus with EnVision and VERITAS, <i>The Planetary Science Journal</i> , 4 , doi:10.3847/PSJ/accae3	Tyler et al. (1986), Voyager 2 Radio Science Observations of the Uranian System: Atmosphere, Rings, and Satellites, <i>Science</i> , 233 , pp. 79-84
Bocanegra-Bahamon, T., Ao, C., Wang, KN., Vergados, P. (2023), Phase Matching Method for Inversion of Venus Radio Occultation Signals, <i>Radio Science</i> , 58 (3),	National Aeronautics and Space Administration
doi:10.1029/2022RS007579	Jet Propulsion Laboratory
Akins, A., Bocanegra-Bahamon, T., Wang, KN., Vergados, P., Ao, C., Preston, R., Asmar, S.,	California Institute of Technology
Parisi, M., and Buccino, D. (2023), Considerations for radio occultation studies of Uranus' atmosphere, ionosphere, and rings with a flagship mission, <i>Uranus Flagship 2023:</i>	Pasadena, California
Investigations and Instruments for cross-discipline science, 25-27 July 2023, Pasadena, CA	www.nasa.gov
Clearance Number: CL#00-0000	PI/Task Mgr Contact Information

Poster Number: RPC#

Copyright 2023. All rights reserved.

PI/Task Mgr Contact Information Email: Panagiotis.Vergados@jpl.nasa.gov