Objective: To investigate new applications for JPL superconducting nanowire single-photon detectors (SNSPDs).

Background: SNSPDs are able to detect single photons with record-breaking timing accuracy, high efficiency, large dynamic range, and low noise. They have become the detector of choice for quantum optics and deep-space optical communication applications. Recent advances in SNSPD technology at JPL may enable infusion into new fields.

New Applications:

Biological Imaging:
The NIR-II window, from 1 - 2.3 µm, allows for deeper penetration depths in imaging biological tissue. Due to the large amounts of absorption and scattering in the tissue, single-photon detectors are needed to detect fluorescence. SNSPDs have recently been used for imaging techniques such as diffuse correlation spectroscopy (DCS) [1-3] and confocal fluorescence imaging [4-5].

Atmospheric Lidar:
The upper atmosphere is very difficult to study, because the low densities mean that emission or absorption occurs on the single-photon level. In the past year, two groups have used SNSPDs for atmospheric lidar: one studied aerosols in the stratosphere [6], and one observed fluorescence from metastable helium in the upper thermosphere [7]. The helium lidar measurements were limited by the active helium lidar using a large area SNSPD array to increase the SNR of their measurements by a factor of >30.

Astronomical Interferometry:
Interferometry allows for high-resolution astrometry, because the angular resolution depends on the baseline between telescopes rather than the telescope diameter. At optical wavelengths, it becomes difficult to directly interfere signals for longer baselines. Intensity interferometry allows for counts from two single-photon detectors to be correlated without directly interfering optical signals. The technique was first demonstrated by Hanbury Brown and Twiss, but had fallen out of favor due to low SNR. Recently, there has been renewed interest in intensity interferometry, and several collaborations have measured the temporal and spatial correlations of different stars [8-12]. The detectors used were semiconductor-based SPADs, APDs, or PMTs, but SNSPDs could enable higher SNR with their higher count rates and better timing precision. Another recent paper proposes performing amplitude interferometry using two-photon interference [13] to correlate optical signals from two telescopes. SNSPDs were used for a laboratory proof-of-principle measurement [14].

Benefits to JPL/NASA: Technologies develop more rapidly when there are more applications (and therefore funding pathways) available to them. Just as the advances in SNSPD technology that were made possible by optical communication investment can now benefit biology, astronomy, or Earth science, the adoption of SNSPDs by these fields could lead to technology development that will improve future optical communication capabilities or other science goals.

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Clearance Number: CL#23-5920
Poster Number: RPC-213
Copyright 2023. All rights reserved.

References:
[1] Ozana 2021 10.1117/1.NPh.8.3.035006
[2] Poon 2022 10.1364/BOE.448135
[4] Xia 2021 10.1021/acscorning.1c00197
[6] Li 2023 10.1364/OE.475124

FY23 Lew Allen Award
New applications for superconducting nanowire single-photon detectors
Principal Investigator: Emma Wollman (389)

Concept for multi-channel DCS where a 100-pixel SNSPD array is used to measure cerebral blood flow across the whole head.

Temporal correlations measured for two bright stars with the DSOC SNSPD array at the 200-inch telescope at Palomar Observatory. The magenta curves show the raw 0-baseline g(2) signal, and the black curves show the filtered signal. The integration times were 40 seconds for Procyon and 2 minutes for Rigel. Previously-published demonstrations required > 12 hour observations to produce similar SNR.

Astronomical Interferometry:

Illustration of metastable helium lidar using a large active-area SNSPD array. A pulsed laser causes fluorescence at 1083 nm, which is collected by a telescope, spectrally and temporally filtered, and detected by an SNSPD bucket array. The timing of the detection events provides altitude information.

Seeing is believing: the effect of seeing in an interferometer.

Kilopixel-scale SNSPD array (collaboration w/ NIST)