
Objectives: 

• Establish JPL capability in the design, modeling, and optimization of micro-thruster 

spacecraft precision pointing, an enabling technology that could support the demanding 

stability requirements of next gen telescopes such as Habitable Worlds Observatory (HWO) 

• Examine “thrusters-only” ACS that eliminates reaction wheels (and their induced 

disturbances) in favor of RCS thrusters for maneuvering and micro-thrusters for pointing 

• Expand on Habitable Exoplanet Observatory (HabEx) micro-thruster research to provide 

initial treatment of micro-thruster ACS for HWO example design

Background:

• Astro2020 goal to conduct imagery and spectroscopy of exo-Earths dictates stringent HWO 

pointing stability requirement. Starlight suppression with high-contrast coronagraphy drives 

HWO to order-of-magnitude stability improvement over state-of-the-art wheel-based ACS 

• HabEx baselined Busek Colloid Micro-Newton Thruster (CMNT), an electrospray micro-

thruster flight-demonstrated on LISA Pathfinder (LPF) in 2016. Electrospray micro-thrusters 

apply high electric potential to conductive charged liquid at the end of a hollow needle 

emitter to accelerate charged droplets and generate thrust

• After Astro2020 recommended a 6-meter HWO, JPL developed scaled-up “6 Meter Space 

Telescope” (6MST) reference design based on HabEx. R&TD examines the CMNT paired 

with the 6MST to develop a time and fuel-efficient ACS architecture

Approach and Results:

Milestone 1: Define 6-meter observatory reference model relevant to HWO

• Observatory model was constructed using JPL’s 6MST design for HWO. Conservative solar 

torque is computed from 6MST geometry assuming reflective multi-layer insulation on all 

surfaces. Solar torque during science is minimized using the aperture cover as an 

articulated “solar sail.”

• R&TD analysis uses realistic micro-thruster sizing. LISA Pathfinder demonstrated CMNT 

thrust range of 0.5 to 3 μN per emitter. Higher emitter thrust limits micro-thruster lifetime, so 

maximum thrust is increased by grouping emitters into thruster “heads” 

• Head size is limited by propellant flow and power electronics capacity. R&TD assumes 36 

emitters based on heritage, but 82 emitters are possible with additional power electronics 

• Heads are grouped into “clusters” to receive thrust commands. R&TD uses four heads with 

range of sizes to provide thrust from 0.5 μN (1 emitter) to 108 μN (36 emitters)
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Milestone 2: Develop thrusters-only ACS architecture and simulation capability

• Thrusters-only ACS follows same operational approach as HabEx. When a target is 

commanded, ACS transitions through modes in “Slew to Science” Roadmap. Momentum 

unloading is not required, and a phased array antenna provides downlink during observations

• High-fidelity ACS/Observatory simulation has been developed in MATLAB to evaluate the 

thrusters-only ACS. The sim builds on initial work of JPL’s HabEx micro-thruster study. R&TD 

added RCS and solar sail control to evaluate end-to-end “Slew to Science” functionality 

Milestone 3: Evaluate preliminary performance of thrusters-only ACS architecture

• ACS performance is evaluated statistically over a large set of observations. “Slew to Science” 

sequences are simulated while tabulating various ACS metrics, including time spent in each 

ACS mode, thruster fuel use, and unintended delta-V

• Simulation results are shown for a single observation. After slewing, RCS to micro-thruster 

handoff occurs at 0.3 hours, and science is reached at 2 hours. Time to science is driven by 

the balance between handoff angular rate and maximum micro-thruster torque

• Average performance metrics “per new target” and “per observation time” will be used to 

evaluate thrusters-only ACS over mission lifetime for various CONOPS. (See R&TD Annual 

Report for example Monte Carlo Simulation results)

Significance/Benefits to JPL and NASA:

• R&TD leverages JPL’s expertise in electrospray micro-thrusters to establish Lab as technical 

leader in micro-thruster spacecraft precision pointing. R&TD work presented at “Towards 

Starlight Suppression for HWO Workshop” on 9/8/2023 to inform HWO community of on-

going micro-thruster research at JPL. (Publication A)

• NASA created the Science, Technology, Architecture Review Team (START) and Technical 

Assessment Group (TAG) on 9/6/2023 to guide technology maturation activities for HWO. 

R&TD is well timed for JPL to support ACS architectural trades that will soon occur.
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