

FY23 Innovative Spontaneous Concepts Research and Technology Development (ISC)

High Directivity and Reconfigurable Sub-Wavelength Lens Coupled to a Rydberg Vapor Cell

Principal Investigator: Jack Bush (334); Co-Investigators: Darmindra Arumugam (334), Brook Feyissa (334), Junhee Park (334)

Objective: To develop a sub-wavelength Radio Frequency lens for the field enhancement and focusing of an incident electric field for the purposes of coupling energy into a Rydberg vapor cell **Background**: As Quantum Rydberg Radars use a radically different approach to field sensing, traditional circuit-based RF systems cannot be used. GO/PO based beamforming techniques requires electrically large structures, which become cumbersome at low GHz frequencies. Sub-wavelength lenses show promise to shape radiation patterns and apply field enhancement to incident planewaves

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#00-0000 Poster Number: RPC# Copyright 2023. All rights reserved. **Approach and Results:** Through simulation, a design was developed to operate at ~ 3 GHz. This design was fabricated and tested in the lab to characterize it's electrical parameters. Designs showed good agreement with simulation, with nearly **2.5 dB** gain with a single lens, and upwards of **4 dB** with 3 lenses. Future efforts are needed to continue this optimization process

Significance/Benefits to JPL and NASA: Allows for electrically small structures for field enhancements for non-metallic RF sensors.

PI/Task Mgr. Contact Information:

818-354-3572 jack.d.bush@jpl.nasa.gov