

FY23 Strategic University Research Partnership (SURP) **Monolithic W-Band Frequency Synthesizer**

PI: Mohammad Ashtijou (334) Ninoslav Majurec (334) Karthik Srinivasan (334) JPL

Hossein Hashemi (Professor of Electrical Engineering) Thilina Ambagahawaththa (Ph.D. Student) **University of Southern California**

Objectives

Analysis, design, tape-out, and measurements of low-phase-noise millimeter-wave voltage-controlled oscillators in a commercial foundry SiGe HBT process.

Implementation and Results

Design/ Author		VCC (V)	Current	Phase Noise*	Max. Frequency	Tuning Range	FoM ₁ *	FoM _T *	No of Cores	Technology
Zhan ISSCC 2023		0.5 V	50 mA	-115.3 dBc/Hz	25.8 GHz	4.4 GHz (18.2 %)	-190.6 dB	-195.8 dB	4	65 nm CMOS
Shu ISSCC 2023		12 mW		-115.6 dBc/Hz	28 GHz	4.9 GHz (17.5 %)	-193.3 dB	-198.2 dB	4	40 nm CMOS
Peng ISSCC 2022		1.35 V	2.6 mA	-112.0 dBc/Hz	17 GHz	3.6 GHz (23.7 %)	-189.9 dB	-197.4 dB	2	130 nm SiGe
Jia ISSCC 2022		0.65 V	192 mA	-111.7 dBc/Hz	60.2 GHz	6.6 GHz (10.9 %)	-185.7 dB	-186.4 dB	16	65 nm CMOS
Jia ISSCC 2021		0.4 V	15.3 mA	-101.4 dBc/Hz	60.4 GHz	8 GHz (14.2 %)	-182.2 dB	-185.2 dB	16	65 nm CMOS
This Work	Design 1	1.5 V	5.5 mA (max)	-101 dBc/Hz	37 GHz	4.25 GHz (12 %)	-184.5 dB	-186.2 dB	1	180 nm SiGe
	Design 2	1.5 V	22 mA (max)	-109 dBc/Hz	34 GHz	3.92 GHz (11 %)	-188.2 dB	-189.9 dB	4	180 nm SiGe
	Design 3	1.5 V	88 mA (max)	-115 dBc/Hz	32 GHz	3.80 GHz (11 %)	-188.2 dB	-190.0 dB	16	180 nm SiGe
	Design 4	1.5 V	352 mA (max)	-121 dBc/Hz	32 GHz	3.80 GHz (11 %)	-188.2 dB	-190.0 dB	64	180 nm SiGe
	Design 5	1.5 V	1408 mA (max)	-127 dBc/Hz	32 GHz	3.80 GHz (11 %)	-188.2 dB	-190.0 dB	256	180 nm SiGe
$\operatorname{FoM}_{1} = PN \Big _{dB} - 20 \log \left(\frac{f}{\Delta f}\right) + 10 \log \left(\frac{P_{DC}}{1mW}\right)$				$\operatorname{FoM}_{T} = PN \left _{dB} - 20 \log \left(\left(\frac{f_{osc}}{\Delta f} \right) * \left(\frac{TR\%}{10} \right) \right) + 10 \log \left(\frac{P_{DC}}{1 \text{ mW}} \right)$			 * Phase noise, FoM, FoM_T and are considered with 1 MHz offset from carrier frequency. 			

 $\operatorname{FoM}_{T} = PN \Big|_{dB} - 20 \log \left(\left(\frac{Josc}{\Delta f} \right) * \left(\frac{TN}{10} \right) \right) + 10 \log \left(\frac{TDC}{1 \text{ mW}} \right)$

1 MHz offset from carrier frequency.

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#00-0000 Poster Number: RPC# Copyright 2023. All rights reserved.

Significance/Benefits to JPL and NASA: The long-term goal of this collaboration is to develop a compact W-band transceiver for application in radars in upcoming missions. The development of this compact radar has several significant building blocks that require innovations in mm-wave circuit design and development to produce a compact system. One of which is a very low phase noise oscillator that results in a high-performance LO for RF and a highperformance clock for digital subsystems of the radar. Hence resulting in high performance radar that allows optimization of velocity and range ambiguities for radar landers and precise measurements in minuscule fragments of molecules and particles of space and earth atmospheric environment.

Publications:

NA

PI/Task Mgr. Contact Information: Phone:818-3937389

Email: Mohammad.Ashtijou@jpl.nasa.gov