

FY23 Strategic University Research Partnership (SURP)

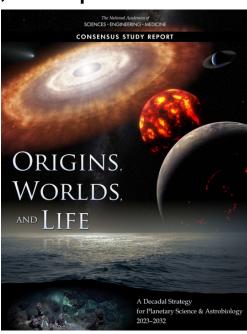
Charting Trajectory Pathways in the Uranian and Neptunian Systems

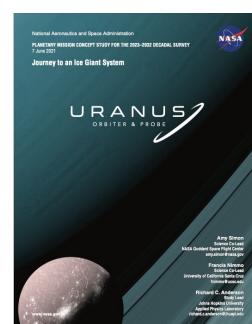
Principal Investigator: Jeffrey Stuart (392); **Co-Investigators:** Farah Alibay (313), Natasha Bosanac (University of Colorado Boulder), Giuliana Miceli (University of Colorado Boulder)

Objectives:

Design and characterize maneuver-enabled trajectories for primary spacecraft from interplanetary arrival conditions to visit various regions in the Neptunian and Uranian systems

Results:


- 1-1. Define arrival conditions from interplanetary transfers and preliminary regions of scientific interest in each system
- 1-2. Analyze solution space in representative multi-body models of Neptunian and Uranian systems
- 1-3. Construct point solutions for the trajectory of a primary spacecraft in Neptunian and Uranian systems


Background:

Ice giants Uranus & Neptune have not been visited since Voyager 2 "grand tour" flybys in 1986 & 1989

Mission objectives for a flagship mission to Ice Giants:

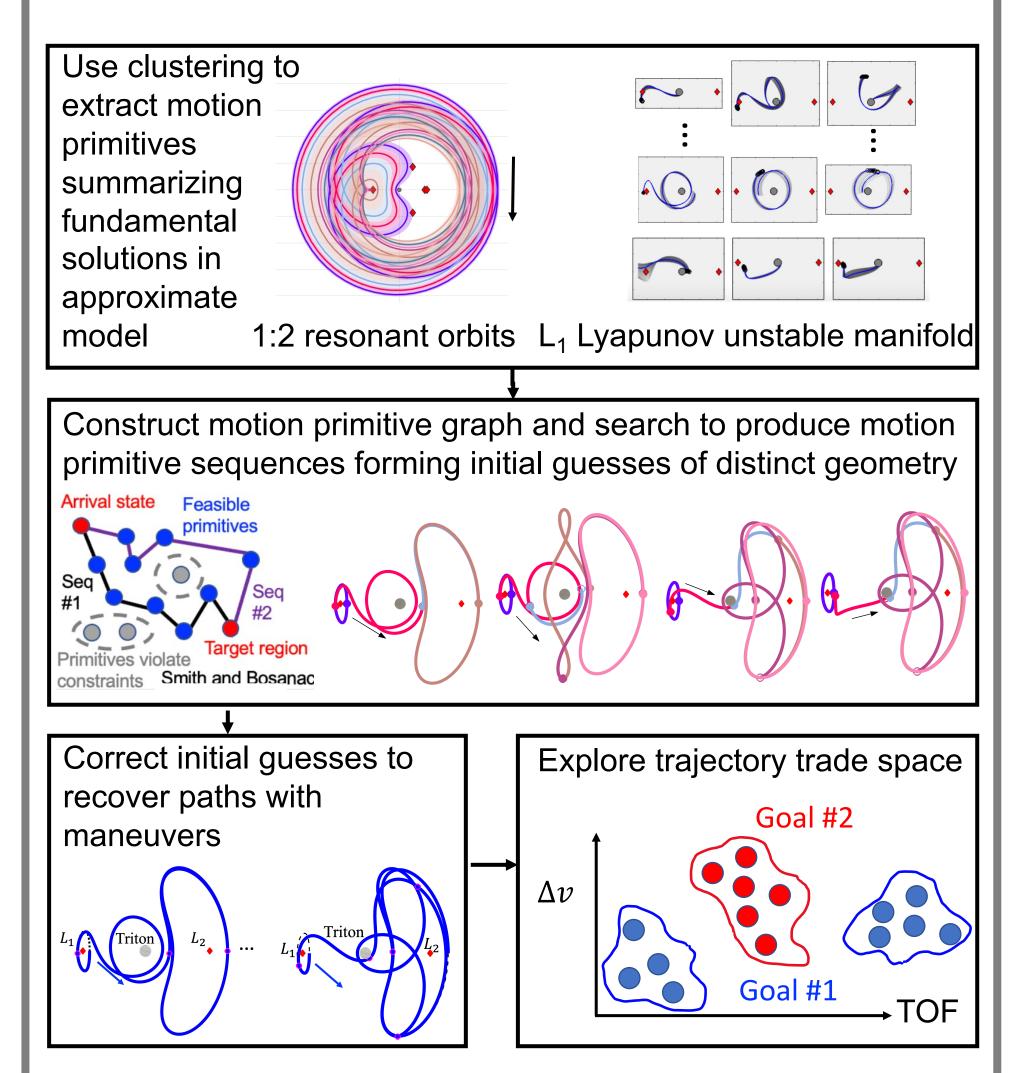
- Perform remote and in situ measurement of the planets' atmosphere, interior, and magnetosphere
- Perform imaging of the rings and small satellites
- Flyby largest satellites to study composition, gravity, surface features, and particle environment

Significance/Benefits to JPL and NASA:

Automated, multi-body search capability to generate pathways for both primary and secondary spacecraft

Benefits to primary spacecraft (i.e., "flagship")

- Addition of multi-body trajectory options to traditional patched conic solutions
- Automated searches to explore trajectory design space while incorporating science return and operational constraints


Benefits of adding secondary spacecraft (i.e., "scouts")

- Science multiplier: more observations, increased spatial & temporal coverage
- Design approach addresses limited capabilities of secondary platforms while still returning high-quality mission designs

Benefits to other mission concepts

- Underlying algorithms readily adapted to other solar system destinations
- Supports concepts for planetary exploration, astrophysics, & heliophysics
- Suitable for early concept formulation, enabling rapid iteration & maturation

Trajectory Design Approach:

Transfer scenario: NOI to 4:5 resonant orbit in Neptune-Triton system Generate motion primitives and Define boundary conditions construct motion primitive graph Natural motion near NOI Target 4:5 Resonant Orbit 1:3 Res 3:5 Reş Target 4:5 Resonant Orbit Search graph for primitive sequences Continuous transfers with that supply distinct initial guesses impulsive maneuvers 2.686 km/s

Note: The total Δv depends on the initial guess geometry and other solutions might yield viable options; the transfer design space exploration is an avenue of ongoing work.

TOF [days]

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#23-5476
Poster Number: RPC# 39
Copyright 2023. All rights reserved.

Publications:

Giuliana Miceli, Natasha Bosanac, Jeffrey Stuart, Farah Alibay, "Motion Primitive Approach to Spacecraft Trajectory Design in the Neptune-Triton System", accepted to AIAA SciTech Forum and AAS/AIAA Space Flight Mechanics Meeting, Orlando, FL, 2024.

PI/Task Mgr. Contact Information:

Jeffrey.r.stuart@jpl.nasa.gov - 818.354.0071