

FY23 Strategic University Research Partnership (SURP)

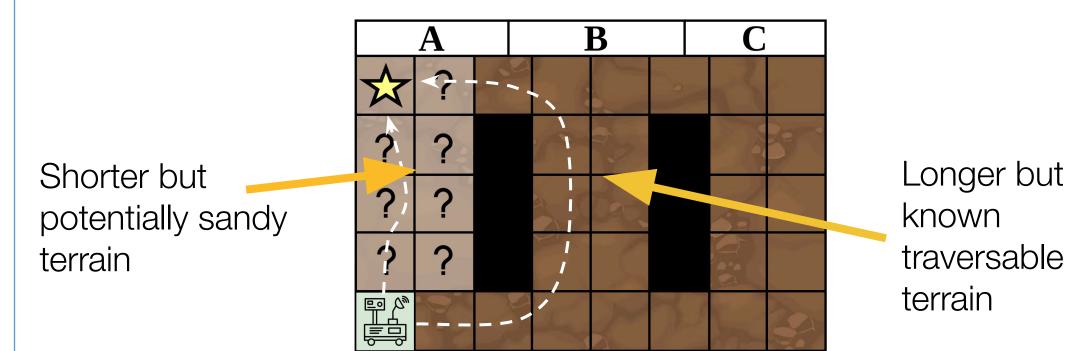
Fast planning under uncertainty with explicit operational and safety guarantees

Principal Investigator: Federico Rossi (347)

Co-Investigators: Martin Feather (512), Zachary Sunberg (University of Colorado at Boulder), Morteza Lahijanian (University of Colorado at Boulder)

Goal and Objective

Develop efficient algorithms for *planning under uncertainty* with explicit operational and *safety guarantees*



Background

Planning under uncertainty: POMDPs

- Efficient approximate algorithms
- No safety constraints

Safety-Aware POMDPs

- Assign extra penalty to "bad" end states
- Needs handcrafted penalties
- Asymptotic guarantees

Constrained POMDPs

- Provide rigorous way of describing complex constraints
- Asymptotic guarantees
- Algorithms are not scalable with many assumptions
 Pathological behavior of algorithms

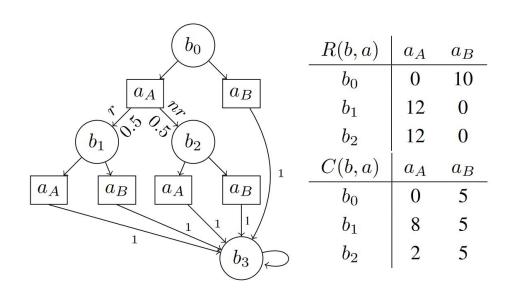
Examples of problem optimization objectives:

Min(drive time) subject to p(drive completed)>0.99 *Max(*data volume) *subject to p(*battery undervoltage)<0.0001 Max(good samples collected) subject to p(hardware failure)<0.00001

Our contribution: Recursively-Constrained POMDPs

- Provide rigorous way of describing complex constraints
- Finite sample guarantees
- Scalable algorithms
- Good behaving algorithms

Approach: Novel Problem Definition - Recursively Constrained POMDPs (RC-POMDPs)



Previous constrained POMDPs create **pathological behavior** due to **mismatch** between **operational requirements** and **constraint formulation**!

Recursively-Constrained POMDPs

- Obeys Bellman's principle of opimality
 - creates better behavior
- Able to do **re-planning**
- Deterministic (more intuitively verified)
 policies

Problem 2 (RC-POMDP Planning Problem). Given a C-POMDP and an admissibility horizon $k \in \mathbb{N}_0 \cup \{\infty\}$, compute optimal policy π^* that is k-admissible, i.e.,

 $\pi^* = \arg\max_{\pi} V_R^{\pi}(b_0) \tag{11}$

s.t. $W(h_t) + \gamma^t V_C^{\pi}(b_t) \le \hat{c} \quad \forall t \in \{0, \dots, k\}.$ (12)

Approach: Scalable Point-based Algorithm

- Developed a point based value iteration algorithm for Recursively-Constrained POMDPs
- Provide explicit bounds on the expected reward
- Provide explicit guarantees for constraint satisfactions
- Leverages recent advancements for POMDPs for scalable planning



:::

Future Work (Y2-Y3)

- Extend to **linear temporal logic** constraints
- Apply to human-in-the-loop planning under uncertainty
- Robot demonstration in Mars Yard

Selected Results

- Scalable up to state spaces of 10⁴ states
- Results show that RC-POMDPs

Env.	Algorithm	Violation Rate	Reward	Cost
CE	CGCP	0.51	12.00	5.19
	CGCP-CL	0.00	6.12	3.25
$(\hat{c} = 5)$	CPBVI	0.00	8.39	4.38
	CPBVI-D	0.00	6.10	3.54
	Ours	0.00	10.00	5.00
C-Tiger	CGCP	0.75	-1.69	3.00
	CGCP-CL	0.14	-2.98	2.93

Benefits to JPL and NASA

Uncertainty is ubiquitous

- Environmental conditions (e.g., terrain-wheel interaction, air density)
- Actuator performance (e.g., thruster valve timing, heater performance)

align more to operational specs

	START					
C=1 80%	C=1 40%	C=1 0%				
C=1 80%	C=1 40%	C=1 0%				
A R=2	B R=1.5	C R=0.5				

Example Planned Trajectories Blue (prev C-POMDP formulation) Green (ours)

		V	and the second second second	
$(\hat{c} = 3)$	CPBVI	0.15	-11.11	2.58
	CPBVI-D	0.09	-9.49	2.76
	Ours (CL)	0.00	-5.75	2.98
CRS(4,4)	CGCP	0.51	10.43	0.51
	CGCP-CL	0.78	1.68	0.72
$(\hat{c} = 1)$	CPBVI	0.00	-0.40	0.52
	CPBVI-D	0.00	0.64	0.47
	Ours	0.00	6.96	0.50
CRS(5,7)	CGCP	0.41	11.98	1.00
	CL-CGCP	0.18	9.64	0.99
$(\hat{c} = 1)$	CPBVI	0.00	0.00	0.00
	CPBVI-D	0.00	0.00	0.00
	Ours	0.00	11.62	0.95
Tunnels	CGCP	0.50	1.61	1.01
	CL-CGCP	0.31	1.22	0.68
$(\hat{c} = 1)$	CPBVI	0.90	1.92	1.62
	CPBVI-D	0.89	1.92	1.57
	Ours	0.00	1.02	0.44

Planning under uncertainty can increase science returns From conservative, *worst-case* margins to explicit, *tight* representation of

Planning with formal guarantees helps performance as well as V&V

- Formal guarantees span the *wide range of conditions* in which the autonomy is intended to operate
- Testing explores in detail *specific scenarios*
- Formal guarantees *complement* testing to help instill confidence that the autonomy will perform correctly and sufficiently rapidly

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#00-0000 Poster Number: RPC# Copyright 2023. All rights reserved.

Publications:

Q. H. Ho, et al. Recursively-Constrained Partially Observable Markov Decision Processes (submitted)

PI/Task Mgr. Contact Information:

Federico Rossi, federico.rossi@jpl.nasa.gov

uncertainty