
Objectives: The goal of this proposal is to develop algorithms for planning under uncertainty that are amenable to use in 

future robotic platforms and that provide explicit operational and safety guarantees - for example, algorithms that 

maximize the probability of capturing images of a phenomenon of interest while verifiably limiting the probability of 

catastrophic events like battery depletion or overheating, or that ensure that a rover will be able to complete a drive with 

a high, prescribed, probability, in spite of significant environmental uncertainty.
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Benefits to JPL and NASA

Goal and Objective Background

Selected Results

Develop efficient algorithms for planning under uncertainty 
with explicit operational and safety guarantees

Planning under uncertainty: POMDPs
● Efficient approximate algorithms
● No safety constraints

Safety-Aware POMDPs
● Assign extra penalty to “bad” end states
● Needs handcrafted penalties
● Asymptotic guarantees

Constrained POMDPs
● Provide rigorous way of describing complex constraints
● Asymptotic guarantees
● Algorithms are not scalable with many assumptions
● Pathological behavior of algorithms

Our contribution: Recursively-Constrained POMDPs
● Provide rigorous way of describing complex constraints
● Finite sample guarantees
● Scalable algorithms
● Good behaving algorithms

Uncertainty is ubiquitous
● Environmental conditions (e.g., terrain-wheel interaction, air density)
● Actuator performance (e.g., thruster valve timing, heater performance)

Planning under uncertainty can increase science returns
From conservative, worst-case margins to explicit, tight representation of 
uncertainty

Planning with formal guarantees helps performance as 
well as V&V
● Formal guarantees span the wide range of conditions in which the 

autonomy is intended to operate
● Testing explores in detail specific scenarios
● Formal guarantees complement testing to help instill confidence that 

the autonomy will perform correctly and sufficiently rapidly

Approach: Novel Problem Definition - Recursively 
Constrained POMDPs (RC-POMDPs)

Approach: Scalable Point-based Algorithm

● Developed a point based value 
iteration algorithm for 
Recursively-Constrained POMDPs

● Provide explicit bounds on the 
expected reward

● Provide explicit guarantees for 
constraint satisfactions

● Leverages recent advancements for 
POMDPs for scalable planning

Recursively-Constrained POMDPs
○ Obeys Bellman’s principle of opimality - 

creates better behavior
○ Able to do re-planning
○ Deterministic (more intuitively verified) 

policies

Previous constrained POMDPs 
create pathological behavior due 
to mismatch between operational 
requirements and constraint 
formulation!

Future Work (Y2-Y3)
● Extend to linear temporal logic constraints
● Apply to human-in-the-loop planning under uncertainty
● Robot demonstration in Mars Yard

● Scalable up to state spaces of 
104 states

● Results show that RC-POMDPs 
align more to operational specs

Example Planned Trajectories
Blue (prev C-POMDP formulation)
Green (ours)

Max(data volume) 
subject to p(battery 
undervoltage)<0.0001

Min(drive time) 
subject to p(drive 
completed)>0.99

Max(good samples 
collected) subject 
to p(hardware 
failure)<0.00001

Examples of problem optimization objectives:

Shorter but 
potentially sandy 
terrain

Longer but 
known 
traversable 
terrain


