Tigran Kalaydzhyan

My research at JPL consists of the two main topics:

  1. Development of new methods for the dark matter detection with the use of atomic clocks and atom interferometers, in particular, future atomic clocks at the International Space Station.
  2. Modelling of many-body systems for the Cold Atom Laboratory, in particular, simulating dynamics of the Bose-Einstein Condensates in microgravity environment.

My formal background is in the theoretical physics, with the focus on high-energy and nuclear physics, as well as gravity and cosmology. For more information visit my website, http://www.tigran.space

  • Ph.D.: University of Hamburg (Forschungszentrum DESY), 2013.
  • M.S.: Moscow State University, 2010.

Research Interests: 
  • Tests of fundamental physics in space, dark matter searches with atomic sensors, tests of gravity and Lorentz-invariance
  • Nuclear theory, confinement, quark-gluon plasma, relativistic hydrodynamics, quantum liquids
  • High-energy theory, string theory, quantum chromodynamics

Professional Experience: 
  • 2016 – pres. : Postdoctoral Associate at Jet Propulsion Laboratory, California Institute of Technology, U.S.A.
  • 2015 – 2016: Postdoctoral Associate at the University of Illinois at Chicago. U.S.A. (Nuclear Theory Group).
  • 2013 – 2015: Postdoctoral Associate at the Stony Brook University. U.S.A. (Nuclear Theory Group).
  • 2010 – 2013: Researcher at DESY-Hamburg, Germany. (String Theory Group).
  • 2009 – 2011: Researcher at ITEP Lattice Group. Alikhanov Institute of Theoretical and Experimental Physics, Moscow, Russia. (Lattice QCD group).

Selected Awards: 
  • 2016 - U.S. Permanent Residence granted on the basis of extraordinary ability in High-Energy and Nuclear Theory.
  • 2014 - Best young Russian scientist, according to the “Russkij Pereplet” rating.
  • 2014 - Prize for the best PhD thesis. VFFD, DESY-Hamburg, Germany.
  • 2009, 2010 - Personal grants of the ITEP Research-and-Educational Center. Russia.

Selected Publications: 
  1. T. Kalaydzhyan, N. Yu, “Extracting dark matter signatures from atomic clock stability measurements”, arXiv:1705.05833 [hep-ph].
  2. T. Kalaydzhyan, E. Murchikova, “Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids”, Nucl. Phys. B 919 (2017) 173.
  3. T. Kalaydzhyan, Comment on “Testing Planck-scale gravity with accelerators”, Phys. Rev. Lett. 116, 209001 (2016).
  4. T. Kalaydzhyan, “Gravitational mass of positron from LEP synchrotron losses”, Sci. Rep. 6, 30461 (2016) [Nature Publishing Group]
  5. T. Kalaydzhyan, “Gravitational mass of relativistic matter and antimatter”, Phys. Lett. B 751 (2015) 29.
  6. T. Kalaydzhyan, “Testing general relativity on accelerators”, Phys. Lett. B 750 (2015) 112.
  7. T. Kalaydzhyan and E. Shuryak, “Collective flow in high-multiplicity proton-proton collisions”, Phys. Rev. C 91 (2015) 054913.
  8. T. Kalaydzhyan and E. Shuryak, “Gravity waves generated by sounds from Big Bang phase transitions”, Phys. Rev. D 91 (2015) 083502.
  9. T. Kalaydzhyan and E. Shuryak, “Explosive regime should dominate collisions of ultra-high energy cosmic rays”, arXiv:1407.3270 [hep-ph].
  10. T. Kalaydzhyan and E. Shuryak, “Collective interaction of QCD strings and early stages of high multiplicity pA collisions”, Phys. Rev. C 90 (2014) 014901.
  11. T. Kalaydzhyan, “On the temperature dependence of the chiral vortical effects”, Phys. Rev. D 89 (2014) 105012
  12. T. Kalaydzhyan and E. Shuryak, “Self-interacting QCD strings and string balls”, Phys. Rev. D 90 (2014) 025031.
  13. M. N. Chernodub, T. Kalaydzhyan, J. Van Doorsselaere, H. Verschelde, “Fermion zero modes in a chromomagnetic vortex lattice”, Phys. Rev. D 89 (2014) 065021
  14. I. Ben-Dayan and T. Kalaydzhyan, “Constraining the primordial power spectrum from SNIa lensing dispersion”, Phys. Rev. D 90 (2014) 083509.
  15. M. N. Chernodub, T. Kalaydzhyan, J. Van Doorsselaere, H. Verschelde, “On chromoelectric (super)conductivity of the Yang-Mills vacuum”, Phys. Lett. B 730 (2014) 63
  16. T. Kalaydzhyan, “Chiral superfluidity of the quark-gluon plasma”, Nucl. Phys. A 913 (2013) 243.
  17. I. Gahramanov, T. Kalaydzhyan and I. Kirsch, “Anisotropic hydrodynamics, holography and the chiral magnetic effect”, Phys. Rev. D 85, 126013 (2012).
  18. P. V. Buividovich, T. Kalaydzhyan, M. I. Polikarpov, “Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics” , Phys. Rev. D 86, 074511 (2012).
  19. T. Kalaydzhyan, I. Kirsch, “Fluid-gravity model for the chiral magnetic effect”, Phys. Rev. Lett. 106, 211601 (2011).
  20. V. Braguta, P. Buividovich, T. Kalaydzhyan, S. Kuznetsov, M. Polikarpov, “The Chiral Magnetic Effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory” , Phys. Atom. Nucl. 75, 488.
  21. N. Evans, T. Kalaydzhyan, K. -y. Kim, I. Kirsch, “Non-equilibrium physics at a holographic chiral phase transition”, JHEP 1101, 050 (2011).
  22. T. Kalaydzhyan, I. Kirsch, “Holographic dual of a boost-invariant plasma with chemical potential”, JHEP 1102, 053 (2011).
  23. P. V. Buividovich, M. N. Chernodub, D. E. Kharzeev, T. Kalaydzhyan, E. V. Luschevskaya, M. I. Polikarpov, “Magnetic-Field-Induced insulator-conductor transition in SU(2) quenched lattice gauge theory”, Phys. Rev. Lett. 105, 132001 (2010).
Tigran Kalaydzhyan
4800 Oak Grove Drive
Pasadena, CA 91109
Phone: 818-354-4880