Dr. Peter Willis

Dr. Willis is the Group Supervisor of JPL’s Chemical Analysis and Life Detection group.  His primary research focus is in the area of chemical biosignatures, and invention of new methods and technologies capable of identifying and characterizing signatures of extraterrestrial life at the molecular level.  Portable instrument systems developed in his group are validated in a variety of harsh terrestrial environments that range from high deserts and hypersaline lakes, to oceans and icy polar regions.  The ultimate goal is to incorporate this technology into the payloads of robotic explorers seeking life elsewhere in our solar system. 

Dr. Willis has also played a key role in the scientific and technical formulation of a variety of mission concepts to explore Titan, Enceladus, and Europa. In 2017 he co-authored the Europa Lander Mission Science Definition Team Report, a publication which broadly serves as a guide to life detection for all future planetary missions in our solar system. He is currently on the steering committee of NASA’s Network for Life Detection and is the Technology Co-Lead of the Ocean Worlds Working Group.

In addition to laying the foundation for missions of the coming decades, Dr. Willis also served as staff scientist for the Mars Perseverance Mars rover mission during the entire mission development phase and prime mission.  His primary focus was on the use of chemical and mineralogical analysis to enable the selection of the most astrobiologically promising samples for potential return to Earth for analysis in terrestrial laboratories.

And finally, Dr. Willis also has a strong commitment to academics, serving as Adjunct Professor in the Department of Chemistry at University of Kansas.  He is a frequent reviewer for a wide range of chemistry-related scientific journals and has mentored over 40 individuals at the undergraduate, graduate, and postdoctoral levels during the course of his research.


Education: 
  • Ph.D. Chemistry, Cornell University (1999)
  • M.S. Chemistry, Cornell University (1996)
  • B.Sc. (Honours) Chemical Physics, Queen’s University (1994)

Research Interests: 

Astrobiology and life detection, geochemistry, planetary habitability, environmental science, chemical oceanography, separation science, microscale chemical analysis, spectroscopy, mass spectrometry, systems biology, systems engineering.


Professional Experience: 
  • JPL, Pasadena
    • Group Supervisor, Chemical Analysis and Life Detection (2019 – present)
    • Staff Scientist, Mars Perseverance Rover Mission (2020-)
    • Investigation Scientist for the SuperCam Instrument, Mars Perseverance Rover Mission (2014 – 2020)
       
  • University of Kansas, Lawrence KS
    • Adjunct Professor of Chemistry (2019 – present)

 

 


Selected Awards: 
  • Designation as JPL Principal (2023)
  • JPL Voyager Award for Exceptional Publication Record in Astrobiology Technology Development and Scientific Instrument Concepts (2023)
  • SCIEX Innovation Medal for Breakthrough Research in the Field of Electrodriven Separations (2021) (https://msb-conferences.org/awards/)
  • JPL Voyager Award for Exceptional Performance as Mars 2020 Staff Scientist Coordinating Early Mission Science Observations (2021)
  • JPL Voyager Award for Outstanding Performance as the Mars 2020 SuperCam Investigation Scientist (2019)
  • JPL Voyager Award for Leadership of the “Ocean Worlds Life Surveyor” NEXT Project (2018)

Selected Publications: 
  1. Effect of pH on the Release of Amino Acids from Microorganisms via Subcritical Water Extraction.  Cieslarova, Z.; Mora, M. F.; Noell, A. C.; Parker, C. W.; Willis, P. A. ACS Earth Space Chem 2024, 8 (2), 274-280. DOI: 10.1021/acsearthspacechem.3c00277.

  2. Developing Tailored Data Combination Strategies to Optimize the SuperCam Classification of Carbonate Phases on Mars.  Veneranda, M. et al. Earth Space Sci 2023, 10 (7). DOI: 10.1029/2023EA002829.

  3. A Mission Simulating the Search for Life on Mars with Automated Drilling, Sample Handling, and Life Detection Instruments Performed in the Hyperarid Core of the Atacama Desert, Chile.  Stoker, C. R. et al. Astrobiology 2023. DOI: 10.1089/ast.2022.0055.

  4. Submersible Capillary Electrophoresis Analyzer: A Proof-of-Concept Demonstration of an In Situ Instrument for Future Missions to Ocean Worlds.  Drevinskas, T.; Mora, M. F.; Santos, M. S. F.; Noell, A. C.; Willis, P. A. Analytical Chemistry 2023, 95 (27), 10249-10256. DOI: 10.1021/acs.analchem.3c00572.

  5. Petrological Traverse of the Olivine Cumulate Seitah Formation at Jezero Crater, Mars: A Perspective From SuperCam Onboard Perseverance.  Beyssac, O. et al. Journal of Geophysical Research-Planets 2023, 128 (7). DOI: 10.1029/2022JE007638.

  6. Compositionally and density stratified igneous terrain in Jezero crater, Mars.  Wiens, R. C. et al. Sci Adv 2022, 8 (34). DOI: 10.1126/sciadv.abo3399.

  7. Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts Relevant to Ocean Worlds Missions.  Mora, M. F.; Kok, M. G. M.; Noell, A.; Willis, P. A. Astrobiology 2022, 22 (8), 914-925. DOI: 10.1089/ast.2021.0091.

  8. Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus.  MacKenzie, S. M. et al. Astrobiology 2022, 22 (6), 685-712. DOI: 10.1089/ast.2020.2425.

  9. A Novel and Sensitive Method for the Analysis of Fatty Acid Biosignatures by Capillary Electrophoresis-Mass Spectrometry.  Kok, M. G. M.; Mora, M. F.; Noell, A. C.; Parker, C. W.; Willis, P. A. Analytical Chemistry 2022, 94 (37), 12807-12814. DOI: 10.1021/acs.analchem.2c02716.

  10. Leveraging Earth hydrosphere science in the search for life on ocean worlds.  Hoehler, T. M., J.S. Bowman, K.L. Craft, P.A. Willis, and D.P. Winebrenner. Oceanography 2022, 35, 23-29. DOI: 10.5670/oceanog.2021.412.

  11. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars.  Farley, K. A. et al. Science 2022, 377 (6614), 1512-+. DOI: 10.1126/science.abo2196.

  12. From Microorganisms to Biosignatures: Subcritical Water Extraction as a Sample Preparation Technique for Future Life Detection Missions.  Cieslarova, Z.; Noell, A. C.; Willis, P. A.; Mora, M. F. Geophysical Research Letters 2022, 49 (12). DOI: 10.1029/2022GL098082.

  13. Europan Molecular Indicators of Life Investigation (EMILI) for a Future Europa Lander Mission.  Brinckerhoff, W. B.; Willis, P. A.; Ricco, A. J.; Kaplan, D. A.; Danell, R. M.; Grubisic, A.; Mora, M. F.; Creamer, J. S.; Noell, A.; Stern, J.; et al. Front Space Technol 2022, 2. DOI: 10.3389/frspt.2021.760927.

  14. Automated Capillary Electrophoresis System Compatible with Multiple Detectors for Potential In Situ Spaceflight Missions.  Zamuruyev, K.; Santos, M. S. F.; Mora, M. F.; Kurfman, E. A.; Noell, A. C.; Willis, P. A. Analytical Chemistry 2021, 93 (27), 9647-9655. DOI: 10.1021/acs.analchem.1c02119.

  15. How to Search for Chemical Biosignatures on Ocean Worlds.  Willis, P. et al. Bulletin of the AAS 2021, 53. DOI: 10.3847/25c2cfeb.8a770808.

  16. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.  Wiens, R. C. et al. Space Science Reviews 2021, 217 (1). DOI: 10.1007/s11214-020-00777-5.

  17. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description.  Maurice, S. et al. Space Science Reviews 2021, 217 (3). DOI: 10.1007/s11214-021-00807-w.

  18. Science of the Europa Lander Mission Concept.  Hand, K., Murray, A. E., Garvin, J. B., Brinckerhoff, W. B., Christner, B., Willis, P. A. … Klonicki, E. . Bulletin of the AAS 2021, 53. DOI: 10.3847/25c2cfeb.ad4ae39e.

  19. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team.  Stack, K. M. et al. Space Science Reviews 2020, 216 (8), 47, Review. DOI: 10.1007/s11214-020-00739-x.

  20. Fully Automated Microchip Electrophoresis Analyzer for Potential Life Detection Missions.  Mora, M. F.; Kehl, F.; Costa, E. T.; Bramall, N.; Willis, P. A. Analytical Chemistry 2020, 92 (19), 12959-12966. DOI: 10.1021/acs.analchem.0c01628.

  21. Mars 2020 Mission Overview.  Farley, K. A. et al. Space Science Reviews 2020, 216 (8). DOI: 10.1007/s11214-020-00762-y.

  22. A Subcritical Water Extractor Prototype for Potential Astrobiology Spaceflight Missions.  Kehl, F.; Kovarik, N. A.; Creamer, J. S.; da Costa, E. T.; Willis, P. A. Earth Space Sci 2019, 6 (12), 2443-2460. DOI: 10.1029/2019ea000803.

  23. Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples.  Creamer, J. S.; Mora, M. F.; Willis, P. A. Analytical Chemistry 2017, 89 (2), 1329-1337. DOI: 10.1021/acs.analchem.6b04338.

  24. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.  Willis, P. A.; Creamer, J. S.; Mora, M. F. Analytical and Bioanalytical Chemistry 2015, 407 (23), 6939-6963. DOI: 10.1007/s00216-015-8903-z.

  25. Identification of primary amines in Titan tholins using microchip nonaqueous capillary electrophoresis.  Cable, M. L.; Hoerst, S. M.; He, C.; Stockton, A. M.; Mora, M. F.; Tolbert, M. A.; Smith, M. A.; Willis, P. A. Earth and Planetary Science Letters 2014, 403, 99-107.

  26. Low-Temperature Microchip Nonaqueous Capillary Electrophoresis of Aliphatic Primary Amines: Applications to Titan Chemistry.  Cable, M. L.; Stockton, A. M.; Mora, M. F.; Willis, P. A. Analytical Chemistry 2013, 85 (2), 1124-1131. DOI: 10.1021/ac3030202.

  27. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era.  Cable, M. L.; Hoerst, S. M.; Hodyss, R.; Beauchamp, P. M.; Smith, M. A.; Willis, P. A. Chemical Reviews 2012, 112 (3), 1882-1909. DOI: 10.1021/cr200221x.

  28. Toward Total Automation of Microfluidics for Extraterrestial In Situ Analysis.  Mora, M. F.; Greer, F.; Stockton, A. M.; Bryant, S.; Willis, P. A. Analytical Chemistry 2011, 83 (22), 8636-8641. DOI: 10.1021/ac202095k.

  29. The Urey instrument: An advanced in situ organic and oxidant detector for Mars exploration.  Aubrey, A. D.; Chalmers, J. H.; Bada, J. L.; Grunthaner, F. J.; Amashukeli, X.; Willis, P.; Skelley, A. M.; Mathies, R. A.; Quinn, R. C.; Zent, A. P.; et al. Astrobiology 2008, 8 (3), 583-595. DOI: 10.1089/ast.2007.0169.

  30. Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument.  Skelley, A. M.; Aubrey, A. D.; Willis, P. A.; Amashukeli, X.; Ehrenfreund, P.; Bada, J. L.; Grunthaner, F. J.; Mathies, R. A. Journal of Geophysical Research: Biogeosciences 2007, 112 (G4), n/a-n/a. DOI: 10.1029/2006JG000329.

Peter Willis
Address: 
4800 Oak Grove Dr.
Pasadena, CA 91109
Phone: 818.354.1297