Dan M. Goebel

Dan M. Goebel received a B.S. in physics, an M.S. in electrical engineering, and a Ph.D. in applied plasma physics from the University of California, Los Angeles, in 1977, 1978 and 1981 respectively. He is a Fellow and Senior Research Scientist at the Jet Propulsion Laboratory, and an Adjunct Professor of Electrical Engineering and Aerospace Engineering at UCLA. He is a Member of the National Academy of Engineering, a Fellow of the National Academy of Inventors, Fellow of the IEEE, Fellow of the AIAA, Fellow of the American Physical Society (APS) and former Chair of the AIAA Electric Propulsion Committee and the IEEE EDS Vacuum Devices Technical Committee. He holds 55 patents and is the author of over 150 technical journal papers, 185 conference papers, 11 book chapters, and one book (with I.Katz) Fundamentals of Electric Propulsion, John Wiley and Sons, NJ 2008. He is an internationally recognized expert in electric propulsion, microwave sources, advanced plasma sources and high voltage engineering.  At JPL he is the Chief Engineer of the Psyche Discovery Mission, he does research and development in ion and Hall thrusters for deep space solar electric propulsion missions, and he applies his expertise in electrostatic discharges, microwave devices, power systems and communications systems to JPL projects.


Education: 
  • B.S. (Physics), University of California at Los Angeles, 1977
  • M.S. (Electrical Engineering), UCLA, 1978
  • Ph.D. (Applied Plasma Physics, Electrical Engineering Department), UCLA, 1981

 


Research Interests: 

Electric propulsion, high efficiency ion and Hall thrusters, cathodes, high voltage engineering, microwave devices and microwave communications, pulsed power


Professional Experience: 

Employment

  • Jet Propulsion Laboratory; Senior Research Scientist 1/03-Present
  • University of California, Los Angeles; Adjunct Professor, 3/07 - present
  • University of Southern California; Adjunct Professor 12/99 – 12/2018
  • HRL/Hughes/Boeing; Principal Scientist 9/88 – 12/02
  • Plasma & Materials Technology (listed on the NASDAQ); Co-founder and VP for Research and Development 1/86 - 6/92
  • University of California, Los Angeles; Research Staff, Principal Development Engineer 4/82 - 8/88
  • University of California, Los Angeles; Postdoctoral Scholar 3/81 - 4/82

 

Professional Society Memberships

  • Member of the National Academy of Engineering (NAE)
  • Fellow of the National Academy of Inventors (NAI)
  • Fellow of the Institute of Electrical and Electronics Engineers (IEEE)
  • Fellow of the American Institute of Aeronautics and Astronautics (AIAA)
  • Fellow of the American Physical Society (APS)
  • Member IEEE Eta Kappa Nu Honor Society (HKN)
  • Member of the Sigma Xi Research Society

 

Journal Editorial Service

  • IEEE Transactions on Electron Devices, Associated Editor for Vacuum Devices (2000-2005)

 

Teaching

  • Adjunct Professor, University of California at Los Angeles, 2007-present
  • Adjunct Professor, University of Southern California, 2000-2018

Selected Awards: 
  • Associated Western Universities Research Scholarship (1978)
  • IEEE Nuclear and Plasma Society National Graduate Student Award (1980)
  • Outstanding Ph.D. Candidate, UCLA School of Engineering and Applied Science (1981)
  • Hughes Electronics Achievement Awards (1990, 1992)
  • HRL Outstanding Published Paper Awards (1993, 1996)
  • Hughes Space and Hughes EDD Outstanding Patent Awards (1997, 1998)
  • Hughes Space and Communications Technical Achievement Award (2000)
  • Hughes Electronics Chairman’s Award (2000)
  • Boeing Satellite Systems President’s Honor Award and Technical Achievement (2001, 2002)
  • Boeing Technical Fellow (2002)
  • IEEE William Dunbar High Voltage Achievement Award (2004)
  • IEPC International Electric Propulsion Conference Best Paper Award (2009)
  • NASA Engineering Achievement Medal (2011)
  • NASA Inventions and Contributions Award (2011)
  • NASA Space Act Award (2012)
  • IEEE John R. Pierce Award for Excellence in Vacuum Electronics (2014)
  • AIAA Outstanding Technical Achievement Award (2014)
  • Rotary National Award for Space Achievement (2015)
  • NASA Space Technology Award (2015)
  • JPL Magellan Award for Technical Achievement (2015)
  • UCLA Engineering Alumni Professional Achievement Award (2016)
  • NASA Space Technology Award (2018)
  • NASA Group Achievement Award for Hall Thruster Tech Development (2019)
  • JPL Voyager Award for Outstanding Leadership in the Psyche Mission (2019)
  • AIAA Best Paper Award, Joint Propulsion Conference (2005, 2012, 2013, 2019)
  • IEPC International Electric Propulsion Conference Best Paper Award (2019)
  • JPL Bonus Award and Team Awards (2005, 2006, 2007, 2009, 2010, 2017, 2020, 2021)
  • NASA Honor Award Group Achievement Award for Psyche Project (2020)

Selected Publications: 

Patents

  1. High current density cathode structure     U.S.#4,297,615  Oct. 27, 1981
  2. Plasma apparatus for materials   U.S.#4,885,070  Dec. 5, 1989
  3. Hollow cathode plasma switch  U.S.#5,132,597  July 21, 1992
  4. Ion implantation & processing method  U.S.#5,212,425  May 18, 1993
  5. Plasma source for ion implantation  U.S.#5,218,179  June 8, 1993
  6. Method of implanting ions from a plasma  U.S.#5,296,272  March 22, 1994
  7. High-voltage crossed-field plasma switch  U.S.#5,329,205  July 12, 1994
  8. High-speed plasma-closing switch  U.S.#5,336,975  August 9, 1994
  9. High-impedance plasma ion implantation  U.S.#5,330,800  July 19, 1994
  10. High repetition-rate plasma-cathode E-gun  U.S.#5,537,005  July 16, 1996
  11. High-impedance plasma ion implantation  U.S.#5,607,509  March 4, 1997
  12. Plasma switch with current interruption  U.S.#5,608,297  March 4, 1997
  13. Apparatus for coating substrates  U.S.#5,656,141  August 12, 1997
  14. Triggered plasma waveguide shutter  U.S.#5,663,694  Sept. 2, 1997
  15. Plasma filled microwave amp and oscillator  U.S.#5,668,442  Sept. 16, 1997
  16. Plasma assisted µwave source with B-field  U.S.#5,694,005  Dec. 2, 1997
  17. Planar crossed-field plasma switch  U.S.#5,828,176  October 27, 1998
  18. Low cost, compact, low frequency TWT  U.S.#5,932,971  August, 3, 1999
  19. Optimally designed TWT for back-off  U.S.#5,942,852  August 24, 1999
  20. Efficient TWT collector  U.S.#6,094,009  July 25, 2000
  21. Protection technique for comm TWTs  U.S.#6,324.041  Nov. 27, 2001
  22. Compact rare earth emitter hollow cathode  U.S.#8,143,788  Mar. 27, 2012
  23. Metallic wall Hall thrusters -1  U.S.#9,453,502  Sept. 27, 2016
  24. Metallic wall Hall thrusters -2  U.S.#9,874,202  Jan. 23, 2018
  25. Hall thruster magnetic discharge chamber  U.S.#10,082,133  Sept.25, 2018
  26. Magnetic shielded Miniature Hall thruster  U.S.#10,723,489  July 28, 2020
  27. Low power MS Hall thruster    U.S.#10,919,649  Feb. 16, 2021
  28. Power Train Deep Space Solar Elec. Prop  U.S.#10,954,005 Mar. 23, 2021
  29. Heaterless hollow cathode    CIT 8404-P  pending
  30. Apparatus for coating substrates  EP#463230  Dec. 10, 1990
  31. Plasma source arrangement  EP#0480688  April 15, 1992
  32. Surface ion implantation  EP#0480689  April 15, 1992
  33. Hollow cathode plasma switch  EP#0506001  Sept. 30, 1992
  34. Grid modulated 100 kV plasma switch  EP#0574933  Dec. 22, 1993
  35. High impedance plasma implantation  EP#0596496  April 27, 1994
  36. High current crossed field plasma switch  EP#0594087  April 27, 1994
  37. Triggered plasma microwave switch  EP#0794588  Oct. 9, 1997
  38. Efficient, linear TWT for communications  EP#0883154  Dec. 9, 1998
  39. High efficiency collector for TWTs  EP#0883151  Dec. 9, 1998
  40. Optimally designed TWT for back off  EP#0883153  Dec. 9, 1998
  41. Circuit for production of comm TWTs  EP#1094488  April 25, 2001
  42. Cathode sputtering apparatus  EP#0308680  March 29, 1989
  43. Apparatus for coating substrates  EP#0463230A1  Dec. 10, 1990
  44. Cathode sputtering device  DE#3830478  July 13, 1989
  45. Apparatus for thin film coating  DE#4020158  Jan. 2, 1992
  46. Apparatus for coating substrates  DE#4026367  Dec. 7, 1994
  47. Ion implantation and surface processing   DE#69112166  Jan 4, 1996
  48. High-voltage crossed-field plasma switch  DE#69307026  July 24, 1997
  49. Compact crossed-field plasma switch  DE#69318506  May 13, 1998
  50. High-impedance plasma ion implantation  DE#69324326  May 12, 1999
  51. Optimal entworfene Wanderfeldröhre  DE#69825218  July 28, 2004
  52. Apparatus for Coating Material  CN#1033297A  Sept. 21, 1988
  53. Plasma source arrangement for ion implant  CP#2,052,080  Jan. 14, 1997
  54. Ion implant. and surf processing  CP#2,052,543  Jan. 28, 1997
  55. High-impedance plasma ion implantation  CP#2,102,384  Jan. 11, 2000

​U.S.=United States, EP=European, DE = German, CN=China, CP=Canadian

 

JPL New Technology Reports (NTRs) and NASA Tech Briefs

  1. NTR # 43494, 2006“Extremely high efficiency xenon ion thruster”
  2. NTR # 43495, 2006 “Method for doubling xenon ion thruster life”
  3. NTR # 43564, 2006 “Highly efficient hollow cathode for plasma and EP applications”
  4. NTR # 43574, 2006, “Rare-earth Emitter Hollow Cathode for Space Propulsion”
  5. NTR # 44923. 2007, “Compact, High-Current Rare-Earth Hollow Cathode for Space
  6. NTR # 44961, 2007, “Precision Micro-Propulsion Ion Thruster”
  7. NTR # 46782, 2008, “Improved Rare-Earth Hollow Cathode for Space Propulsion”
  8. NTR # 47347, 2009, “Internal Electrostatic Discharge Monitor (IESDM)”
  9. NTR # 47388, 2009, “Breakthrough Hall Thruster Technology”
  10. NTR # 47901, 2010, “Co-Flow Hollow Cathode Technology”
  11. NTR # 48483, 2011. “Metallic Wall Hall Thrusters”
  12. NTR # 49427, 2013, “Hall Thruster with Magnetic Discharge Chamber”
  13. NTR # 49857, 2015, “Power control architecture for a deep space SEP mission”
  14. NTR # 50449, 2016, “Magnetically Shielded Miniature Hall Thruster +Internal Cathode”
  15. NTR # 50697, 2017, “Hall Thruster Anode Manifold High Azimuthal Flow Uniformity”
  16. NTR # 51448, 2019, “Heaterless Hollow Cathode with Fast Discharge Ignition”
  17. NTR # 51647, 2021, "Thermally managed electric propulsion systems"

 

Books and Book Chapters

  1. D.M. Goebel and I. Katz, Fundamentals of Electric Propulsion Ion and Hall Thrusters, John Wiley & Sons, NJ, 2008.
  2. D.M. Goebel and J. Foster, Chapter 119, “Ion Thrusters”, in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shey (eds), John Wiley & Sons, UK, 2010.
  3. D.M. Goebel, “Gridded Ion Thrusters”, Chapter 13.3 of Advanced Materials for In-Space Propulsion, L. Johnson and T. Russell (eds.), AIAA Book Series, (2012).
  4. Bryan A. Palaszewski, Michael L. Meyer, Les Johnson, Dan M. Goebel, Harold White, and David J. Coote, “In-Space Chemical Propulsion System Roadmap” Chapter 7 in Chemical Rocket Propulsion, Springer, Switzerland 2017.
  5. D.M. Goebel, co-author of Chapter 2, “Historical Highlights”, and co-author of Chapter 7, “Communications Applications of Vacuum Electronic Devices” in Modern Microwave and Millimeter-Wave Power Electronics, IEEE Press, NY 2004.
  6. D.M. Goebel, co-author of Chapter 4, “Pulse Shortening and Improved High Vacuum Techniques”, Chapter 8: “Cathodes and Electron Guns”, Chapter 9 “Plasma Assisted Beam Transport”, and Chapter 10: “Plasma Loading of HPM Devices, in Advances in High Power Microwave Sources and Technologies, IEEE Press, NY 2001.
  7. D.M. Goebel, author of Chapter 7, “Plasma Sources”, and co-author of Chapter 8 “Pulser Technology for Plasma-Immersion Ion Implantation and Deposition”, Handbook of Plasma Immersion Ion Implantation and Deposition, Wiley, New York (Sept. 2000).

 

Refereed Technical Journal Publications (while at JPL)

  1. D.M. Goebel, G. Becatti, I.G. Mikellidea, A. Lopez Ortega, “Plasma Hollow Cathodes”, J. Appl. Physics, 130, 050902 (2021);doi: 10.1063/5.0051228
  2. D.M. Goebel and G. Becatti, “Compact Scanning Retarding Potential Analyzer”, Rev. Sci. Instrum. 92, 013511 (2021); doi.org/10.1063/5.0035964
  3. D.M. Goebel, R.R. Hofer, I.G. Mikellides, I. Katz, J.E. Polk and B. Dotson, “Conducting Wall Hall Thrusters”, IEEE TPS Special Issue on Plasma Propulsion, Vol. 43, Issue 1, pp118-126, (2015).
  4. D.M. Goebel and E. Chu, “High Current Lanthanum Hexaboride Hollow Cathode for High Power Hall Thrusters”, J. Propulsion and Power, Vol.30, No. 1, pp 35-40, (2014), doi: 10.2514/1.B34870
  5. D.M. Goebel, K.K. Jameson and R.R. Hofer, “Hall Thruster Cathode Flow Impacts on Cathode Coupling and Cathode Life”, J. Propulsion and Power, 28, No.2, pp.355-363, (2012).
  6. D.M. Goebel, J.E. Polk, I. Mikellides, “Ion Thruster Performance Impacts Due to Cathode Wear”, J. of Propulsion and Power, 27, No.4, pp. 768-775 (2011).
  7. D.M. Goebel and R.M. Watkins, “Compact Lanthanum Hexaboride Hollow Cathode”, Rev. Sci. Instrum., 81, 083504, (2010).
  8. D.M. Goebel, “Analytical Discharge Performance Model for rf Ion Thrusters”, IEEE Transactions on Plasma Science, 36, p. 2111-2121, (2008).
  9. D.M. Goebel, K. Jameson, I. Katz and I. Mikellides, “Potential Fluctuations and Energetic Ion Production in Hollow Cathode Discharges”, Physics of Plasmas, 14, 103508 (2007).
  10. D.M. Goebel, R.E. Wirz, and I. Katz, “Analytical Ion Thruster Discharge Performance Model”, Journal of Propulsion and Power, 23, No.5, p.900 (2007).
  11. D.M. Goebel, R.M. Watkins and K. Jameson, “LaB6 Hollow Cathodes for Ion and Hall Thrusters”, Journal of Propulsion and Power, 23, No.3, p.527-528 (2007).
  12. D.M. Goebel, K. Jameson, I. Katz and I. Mikellades, “Hollow Cathode Theory and Modeling: I. Plasma Characterization with Miniature Fast-Scanning Probes”, J. App. Phys., 98(11), 113302 (2005).
  13. D.M. Goebel and A. Schneider, “High Voltage Breakdown and Conditioning of Carbon and Molybdenum Electrodes”, IEEE Trans. Plasma Sci., 33, 1136–1148, (2005).
  14. D.M. Goebel, W.L. Menninger and A. Schneider, “Gain Increases Through End of Life in Traveling Wave Tubes, IEEE Trans. Electron Devices, 50, 1117-1124 (2003).
  15. D.M. Goebel, R. Liou, W. Menninger, X. Zhai, and E.A. Adler, “Development of linear TWT amplifiers for telecommunications Applications”, IEEE Transactions on Electron Devices, 48, 74-81 (2001).
  16. D.M. Goebel, “Theory of Long Term Gain Growth in Traveling Wave Tubes”, IEEE Trans. on Electron Devices, 47, 1286-1292 (2000).
  17. D.M. Goebel and R.M. Watkins, “High Current, Low Pressure Plasma Cathode Electron Gun”, Rev. Sci. Instrum., 71, 388-398 (2000).
  18. D.M. Goebel, J.G. Keller, W.L. Menninger, S. Blunk, “Gain Stability in Traveling Wave Tubes”, IEEE Transactions on Electron Devices, 46, 2235-2243 (1999).
  19. D.M. Goebel, Y. Carmel, G. Nusinovich, “Advances in Plasma Filled Microwave Sources”, Physics of Plasmas, 6, 2225-2232 (1999).
  20. D.M. Goebel, E.S.Ponti, R.W.Lemke, “Frequency and Power Response of High-Power Plasma-filled BWO Microwave Source”, Physics of Plasmas Letters, 6, 2319-2322 (1999).
  21. D.M. Goebel, E.A.Adler,  E.S.Ponti, J.Feicht, R.Eisenhart, R.W.Lemke, “Efficiency Enhancement in High Power Microwave Oscillators”, IEEE Trans. Plasma Sci., 27, 800-808 (1999).
  22. D.M. Goebel, “Pulse Shortening Causes in High Power Microwave Devices”, IEEE Trans. Plasma Science, 26 263-272 (1998).
  23. D.M. Goebel, “Performance and Pulse Shortening in a 200 keV Pasotron Microwave Source”, IEEE Trans. Plasma Science, 26 354-363 (1998).
  24. D.M. Goebel, "Cold-Cathode, Pulsed-Power Plasma Discharge Switch", Rev. Sci. Instru., 67, (1996) 3136.
  25. D.M. Goebel, J.M. Butler, R.W. Schumacher, R.L. Eisenhart, "High Power Microwave Source Based on an Unmagnetized Backward Wave Oscillator, IEEE Trans. Plasma Science, 22, 547-555 (1994).
  26. D.M. Goebel, "High Power Modulator for Plasma Ion Implantation," J. Vac. Sci. Tech. B, 12, (1994) 838-842.
  27. D.M. Goebel, R.L. Poeschel, R.W. Schumacher, "Low Forward Voltage Drop Plasma Switch for Inverter and Modulator Applications," Rev. Sci. Instrum.64 (1993) 2312.
  28. D.M.Goebel, J.Bohdansky, R.W.Conn, Y.Hirooka, W.K.Leung, B. LaBombard, R.E.Nygren, G.N.Tynan, "Erosion and Plasma Redeposition of Graphite by Hydrogen Plasmas", Fusion Technology 15 (1989) 102-107.
  29. D.M.Goebel, et al., "ALT-II Toroidal Belt Pump Limiter Performance in TEXTOR," J.Nucl. Mat. 162-164 (1989) 115.
  30. D.M.Goebel, J.Bohdansky, R.W.Conn, et al., "Erosion and Redeposition of Graphite by High Density Plasma Bombardment", Nuclear Fusion 28 (1988) 1041.
  31. D.M.Goebel, G.A.Campbell, R.W.Conn, et al.,"Langmuir Probe Measurements in the TEXTOR Tokamak During  ALT-I Pump Limiter Experiments," Plasma Physics and Controlled Fusion 29 (1987) 473.
  32. D.M.Goebel, Y.Hirooka, R.W.Conn, et al., "Erosion and Redeposition Experiments in the PISCES Facility,"  J.Nucl. Mat. 145-147 (1987) 61.
  33. D.M. Goebel, "Pump Limiter Experiments and Engineering," Fusion Technology 10 (1986) 761.
  34. D.M. Goebel, Y. Hirooka, T.A. Sketchley, "Large Area Lanthanum Hexaboride Electron Emitter," Rev. Sci. Instrum. 56 (1985) 1717.
  35. D.M. Goebel, Y. Hirooka, G.A. Campbell, "Large Area Lanthanum Molybdenum Electron Emitter," Rev. Sci. Instrum. 56 (1985) 1888.
  36. D.M. Goebel, G.A. Campbell, R.W. Conn, "Plasma Surface Interaction Facility-PISCES", J.Nucl.Mat. 121 (1984) 277.
  37. D.M. Goebel, R.W. Conn, "Observation of Enhanced Particle Removal Rates in Pump Limiter Simulation Experiments", J.Nucl.Mat. 128 (1984) 249.
  38. D.M. Goebel "Ion Source Discharge Performance and Stability", Physics of Fluids, 25 (1982) 1093.
  39. D.M. Goebel, A.T. Forrester, J.T. Crow, "Plasma Studies on a Hollow Cathode, Magnetic Multipole Ion Source", Rev. Sci. Instrum. 53 (1982) 810.
  40. D.M. Goebel, A.T. Forrester, S. Johnson, " Lanthanum Molybdenum Emitters in Hollow Cathodes", Rev. Sci. Instrum. 51 (1980) 1468.
  41. D.M. Goebel, J.T. Crow, A.T. Forrester, "Lanthanum Hexaboride Hollow Cathode for Dense Plasma Production", Rev. Sci. Instrum. 49 (1978) 469.
  42. D.M. Goebel, G.W. Hamilton, " Neutral Beam Injector for 475 keV MARS Sloshing Ions", in: Production and Neutralization of Negative Ions and Beams, American Institute of Physics Proc. 111 (1984) 617, re-published in Nuclear Engineering and Design/Fusion, 3 (1986).
  43. G. Becatti, D.M. Goebel, “Observation of Rotating MHD Modes in the Plume of a High-Current Hollow Cathode”, J. Appl. Phys. 129, 033304 (2021); doi.org/10.1063/5.0028566
  44. V. Chaplin, D.M. Goebel, R.A. Lewis, F. Lockwood Estrin, and P.N. Randall, “Accelerator Grid Life Modeling of the T6 Ion Thruster for BepiColombo”, J. Prop. & Power, (2020) https://doi.org/10.2514/1.B37938
  45. G. Becatti, R.W. Conversano, D.M. Goebel, “Demonstration of 25,000 Ignitions on a Compact Heaterless LaB6 Hollow Cathode” Acta Astronauticia, 178 (2021) 181–191.
  46. S.J. Hall, B.A. Jorns, A.D. Gallimore, D.M. Goebel, “Operation of a High-Power Nested Hall Thruster with Reduced Cathode Flow Fraction,” Journal of Propulsion and Power (2020), doi: 10.2514/1.B37929
  47. I.G. Mikellides, A. Lopez Ortega, D.M. Goebel, G. Becatti, "Dynamics of a Hollow Cathode Discharge in the Frequency Range of 1-500 kHz", Plasma Sources Sci. Tech., 29, 0350003 (2020).
  48. I. Levchenko, S. Xu, S. Mazouffre, D. Lev, D. Pedrini, D.M. Goebel, L.Garrigues, F. Taccogna, D. Pavarin and K. Bazaka, "Perspectives, frontiers and new horizons for plasma based space electric propulsion", Phys. Plasmas 26, 000000 (2019); doi: 10.1063/1.5109141
  49. D.R. Lev, I.G. Mikellides, D. Pedrini, D.M. Goebel, B.A. Jorns and M.S. McDonald, "Recent Progress in Research and Development of Hollow Cathodes for Electric Propulsion", Rev. Mod. Plasma Phys. 3 (2019) doi.org:10.1007/s41614-019-0026-0
  50. R.W. Conversano, R. Lobbia, T. Kerber, K. Tilley, D.M. Goebel, S. Reilly, “Performance characterization of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode" Plasma Sources Sci. Technol., 28, No. 10, 103019, Oct. 2019; doi:10.1088/1361-6595/ab47de
  51. C.A. Dodson, D. Perez-Grande, B.A. Jorns, D.M. Goebel, and R.E. Wirz.  "Ion Heating Measurements on the Centerline of a High-Current Hollow Cathode Plume", J. Propulsion and Power, July 2018, https://doi.org/10.2514/1.B36788
  52. J.R. Brophy, N. Strange, D.M. Goebel, S. Johnson, D. Mazanek and D. Reeves, “Characteristics of a High-Power Ion Beam Deflection System Necessary to Deflect the Hypothetical Asteroid 2017PDC”, J. Space Safety Engineering, Vol. 5, Issue 1, March 2018, p.34-45, https://doi.org/10.1016/j.jsse.2017.12.001
  53. G. Becatti, D.M. Goebel, J.E. Polk and P. Guerrero, “Life Evaluation of a Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thrusters”, J. Propulsion and Power, Jan. 2, 2018, DOI: 10.2514/1B36659.
  54. B.A. Jorns, C. Dodson, D.M. Goebel, R. Wirz, “Propagation of Ion Acoustic Wave Energy in the Plume of a High-Current LaB6 Hollow Cathode”, Physical Review E 96, 023208 (2017).
  55. M.S. McDonald, A.D. Gallimore and D.M. Goebel, “Improved Heater Design for High-Temperature Hollow Cathodes”, Rev. Sci. Instrum. 88, 026104 (2017); doi:10.1063/1.4976728
  56. R.W. Conversano, D.M. Goebel, R.R. Hofer, I.G. Mikellides, and R.E. Wirz, "Performance Analysis of a Low-Power Magnetically Shielded Hall Thruster: Experiments", Journal of Propulsion and Power, April 2017. http://dx.doi.org/10.2514/1.B36230
  57. R.W. Conversano, D.M. Goebel, R.R. Hofer, I.G. Mikellides, and R.E. Wirz, "Performance Analysis of a Low-Power Magnetically Shielded Hall Thruster: Computational Modeling", Journal of Propulsion and Power, April 2017. http://dx.doi.org/10.2514/1.B36231
  58. Matthes, C.S.R., Ghoniem, N.M., Li, G.Z., Matlock, T.S., Goebel, D.M., Dodson, C.A., Wirz, R.E., “Fluence-dependent sputtering yield of micro-architectured materials”, Applied Surface Science, Vol. 407, 2017, pp. 223-235, doi: 10.1016/j.apsusc.2017.02.140
  59. Li, G., Matlock, T., Goebel, D., Dodson, C., Matthes, C., Ghoniem, N., Wirz, R., "In situ plasma sputtering and angular distribution measurements for structured molybdenum surfaces", Plasma Sources Science and Technology, Vol. 26, No. 6, (2017) 065002, doi: 10.1088/1361-6595/aa6a7d
  60. A. Lopez-Ortega, I. Katz, I.G. Mikellides, D.M. Goebel, “Self-Consistent Model of a High Power Hall Thruster Plume”, IEEE Trans. Plasma Sci., Vol. 43, No. 9, pp. 2875-2886 (2015).
  61. R.W. Conversano and D.M. Goebel, “Improved Model of Long-Term Gain Increases in Traveling Wave Tubes”, IEEE Transactions on Electron Devices, Vol. 62, Issue 2, pp. 652-658, (2015).
  62. I.G. Mikellides, D.M. Goebel, B.A. Jorns, J.E. Polk and P. Guerrero, “Numerical simulations of the Partially Ionized Gas in a 100-A LaB6 Hollow Cathode”, IEEE TPS Special Issue on Plasma Propulsion, Vol. 43, Issue 1, pp 173-184, (2015).
  63. R.W. Conversano, D.M. Goebel, R.R. Hofer and R. Wirz, “Development and Initial Testing of a Magnetically Shielded Miniature Hall Thruster”, IEEE TPS Special Issue on Plasma Propulsion, Vol. 43, Issue 1, pp 103-117, (2015).
  64. D.Y. Oh, J.S. Snyder, D.M. Goebel, R.R. Hofer, D.F. Landau, and T.M. Randolph, “Solar Electric Propulsion for Discovery Class Missions”, J. Spacecraft and Rockets, 51, pp. 1822-1835, (2014) 10.2514/1.A32889
  65. B. A. Jorns, I.G. Mikellides, D.M. Goebel, “Ion Acoustic Turbulence in a 100-A LaB6 Hollow Cathode”, Physical Review E, 90, 063106 (2014).
  66. I.G. Mikellides, I. Katz, R.R. Hofer, D.M. Goebel, “Magnetic Shielding of Hall Thrusters at High Discharge Voltages,”, J. Appl. Phys. 116, 053302 (2014).
  67. H.S. Mao, R.E. Wirz and D.M. Goebel, “Plasma Structure of Miniature Ring-Cusp Ion Thruster Discharges”, J.Prop. & Power, Vol.30, No. 2, pp 1-9, (2014), doi: 10.2514/1.B34959
  68. T.S. Matlock, D.M. Goebel, R. Conversano and R.E. Wirz, “High flux plasma source for plasma-materials interactions experiments”, Plasma Sources Sci. Technol. 23 (2014) 025014.
  69. J.S. Snyder, J.R. Brophy, R.R. Hofer, D.M. Goebel and Ira Katz, “Experimental Investigation of a Direct-Drive Hall Thruster and Solar Array System," Journal of Spacecraft and Rockets, Vol. 51, No. 1, pp. 360-373, (2014), doi:10.2514/1.A32479
  70. I.G. Mikellides, I. Katz, R.R. Hofer, D.M. Goebel, “Magnetic Shielding of a Laboratory Hall Thruster, I. Theory and Validation”, J. Appl. Phys. 115, 043303 (2014).
  71. R.R. Hofer, D.M. Goebel, I.G. Mikellides, I. Katz, “Magnetic Shielding of a Laboratory Hall Thruster, II. Experiments”, J. Appl. Phys. 115, 043304 (2014).
  72. E. Chu, D.M. Goebel and R.E. Wirz, “Reduction of Energetic Ion Production in Hollow Cathodes by External Gas Injection”, J. Prop. & Power, Vol. 30, pp 1155-1163 (2013) 10.2514/1.B34799.
  73. I.G. Mikellides, I. Katz, R.R. Hofer, D.M. Goebel, “Magnetic Shielding of Walls from the Unmagnetized Ion Beam in a Hall Thruster”, Appl.Phys.Lett., 102, 023509 (2013).
  74. L. Johnson, M. Meyer, B. Palaszewski, D. Coot, D.M. Goebel and H. White, “Development Priorities for In-space Propulsion Technologies”, Acta Astronautica, 82, (2013) pp. 148-152.
  75. E. Chu and D.M. Goebel, “High Current Lanthanum Hexaboride Hollow Cathode for 10 to 50 kW Hall Thrusters, IEEE Trans. Plasma Sci., 20, No. 9, 2133-2144 (2012).
  76. J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, J.R. Anderson and A. Sengupta, “A High Power Ion Thruster for Deep Space Missions”, Rev. Sci. Instrum., 83, 073306 (2012).
  77. J.S. Snyder, R.R. Hofer, D.M. Goebel, J.E. Polk, N. Wallace, H. Simpson, “Performance Evaluation of the T6 Ion Engine”, J. of Propulsion and Power, 28, No.2, pp.371-379, (2012).
  78. R.E. Wirz, I. Katz, D.M. Goebel, and J.R. Anderson, “Electron Backstreaming Determination for Ion Thrusters”, J. Propulsion & Power, 27, No. 1, pp. 211-217 (2011).
  79. I.G. Mikellides, I. Katz, R.R. Hofer, D.M. Goebel, and K. deGrys, “Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator”, Physics of Plasmas, 18, 033501 (2011).
  80. I.G. Mikellides, D.M. Goebel, J.S. Snyder, I. Katz, D.A. Herman, “The Discharge Plasma in Ion Engine Neutralizers: Numerical Simulations and Comparisons with Laboratory Data”, J. Appl. Phys., 108, 113308, (2010).
  81. A. Sengupta, D.M. Goebel, A. Owens, “Langmuir Probe Studies of Magnetic Confinement in an Ion Thruster Discharge Plasma”, J. of Propulsion and Power, Vol. 25, No. 2, (2009).
  82. I. Katz, I. Mikellides, D.M. Goebel and J. Polk, “Insert Heating and Ignition of Inert Gas Hollow Cathode”, IEEE Transactions on Plasma Science, 36, p. 2199-2206, (2008).
  83. I. Katz, R. Hofer and D.M. Goebel, “Ion Current Transport in Hall Thrusters”, IEEE Transactions on Plasma Science, 36, p. 2015-2024, (2008).
  84. R. Wirz, J. Anderson, I. Katz and D.M. Goebel, “Decel Grid Effects on Ion Thruster Grid Erosion”, IEEE Transactions on Plasma Science, 36, p. 2122-2129, (2008).
  85. R. Hofer, L. Johnson, D.M.Goebel and R. Wirz, “Effect of Internally-Mounted Cathodes on a Hall Thruster Plume Properties”, IEEE Transactions on Plasma Science, 36, p. 2004-2014, (2008).
  86. R.E. Wirz and D.M. Goebel, “Effects of Magnetic Field Topography on Ion Thruster Discharge Performance”, Plasma Sources and Science Technology, 17, Issue 3, (2008) 035010.
  87. I. Mikellides, I. Katz, D. M.Goebel, K. Jameson, “Wear Mechanisms in Electron Sources for Ion Propulsion, II: Discharge Hollow Cathode”, AIAA Journal of Propulsion and Power, Vol. 24, No. 4, July 2007.
  88. R.D. Kolasinski, J.E. Polk, D. Goebel, L.K. Johnson, “Carbon Sputtering Yield Measurements at Grazing Incidence”, Applied Surface Science (2007), 10.1016/ j.apsusc.2007.09.082
  89. I. Katz, J.E. Polk, I. Mikellides, D.M. Goebel, S.E. Hornbeck, “Thermal Model of the Hollow Cathode Using Numerically Simulated Plasma Fluxes, J. Propulsion and Power, 23, No. 3, p. 8-11 (2007).
  90. R.D. Kolasinski, J.E. Polk, D.M.Goebel and L.K. Johnson, “Sputtering Yield Measurements at Glancing Incidence Using a Quartz Crystal Microbalance” J. Vac. Sci. Tech. A, 25, p.236-245 (2007).
  91. I. Mikellades, I.Katz, D.M.Goebel, K.K. Jameson “Evidence of Nonclassical Plasma Transport in Hollow Cathodes for Electric Propulsion”, J. Appl. Phys., 101, No.6, 063301 (2007).
  92. I. Mikellades, I.Katz, D.M.Goebel, K.K. Jameson “Plasma Processes Inside Orificed Hollow Cathodes”, Physics of Plasmas, 13, 063504 (2006).
  93. I. Mikellades, I.Katz, D.M.Goebel, K.K. Jameson “Hollow Cathode Theory and Modeling: II. A two-dimensional model of the emitter region”, J. App. Phys., 98(10), 113303 (2005).

 

 

Dan M. Goebel
Address: 
4800 Oak Grove Dr.
Pasadena, CA 91109
Phone: 818.354.8284
Fax Number: 818.393.6682