Dan M. Goebel received a B.S. in physics, an M.S. in electrical engineering, and a Ph.D. in applied plasma physics from the University of California, Los Angeles, in 1977, 1978 and 1981 respectively. He is a Fellow and Senior Research Scientist at the Jet Propulsion Laboratory, and an Adjunct Professor of Electrical Engineering and Aerospace Engineering at UCLA. He is a Member of the National Academy of Engineering, a Fellow of the National Academy of Inventors, Fellow of the IEEE, Fellow of the AIAA, Fellow of the American Physical Society (APS) and former Chair of the AIAA Electric Propulsion Committee and the IEEE EDS Vacuum Devices Technical Committee. He holds 59 patents and is the author of over 150 technical journal papers, 175 conference papers, 11 book chapters, and two textbooks on Electric Propulsion published in 2008 and 2023. He is an internationally recognized expert in electric propulsion, microwave sources, advanced plasma sources and high voltage engineering. At JPL he is the Chief Engineer of the Psyche Discovery Mission, he does research and development in ion and Hall thrusters for deep space solar electric propulsion missions, and he applies his expertise in electrostatic discharges, microwave devices, power systems and communications systems to JPL projects.
- B.S. (Physics), University of California at Los Angeles, 1977
- M.S. (Electrical Engineering), UCLA, 1978
- Ph.D. (Applied Plasma Physics, Electrical Engineering Department), UCLA, 1981
Electric propulsion, high efficiency ion and Hall thrusters, cathodes, high voltage engineering, microwave devices and microwave communications, pulsed power.
Employment
- Jet Propulsion Laboratory; Senior Research Scientist 1/03-Present
- University of California, Los Angeles; Adjunct Professor, 3/07 - present
- University of Southern California; Adjunct Professor 12/99 – 12/2018
- HRL/Hughes/Boeing; Principal Scientist 9/88 – 12/02
- Plasma & Materials Technology (listed on the NASDAQ); Co-founder and VP for Research and Development 1/86 - 6/92
- University of California, Los Angeles; Research Staff, Principal Development Engineer 4/82 - 8/88
- University of California, Los Angeles; Postdoctoral Scholar 3/81 - 4/82
Professional Society Memberships
- Member of the National Academy of Engineering (NAE)
- Fellow of the National Academy of Inventors (NAI)
- Fellow of the Institute of Electrical and Electronics Engineers (IEEE)
- Fellow of the American Institute of Aeronautics and Astronautics (AIAA)
- Fellow of the American Physical Society (APS)
- Member IEEE Eta Kappa Nu Honor Society (HKN)
- Member of the Sigma Xi Research Society
Journal Editorial Service
- IEEE Transactions on Electron Devices, Associated Editor for Vacuum Devices (2000-2005)
Teaching
- Adjunct Professor, University of California at Los Angeles, 2007-present
- Adjunct Professor, University of Southern California, 2000-2018
- Associated Western Universities Research Scholarship (1978)
- IEEE Nuclear and Plasma Society National Graduate Student Award (1980)
- Outstanding Ph.D. Candidate, UCLA School of Engineering and Applied Science (1981)
- Hughes Electronics Achievement Awards (1990, 1992)
- HRL Outstanding Published Paper Awards (1993, 1996)
- Hughes Space and Hughes EDD Outstanding Patent Awards (1997, 1998)
- Hughes Space and Communications Technical Achievement Award (2000)
- Hughes Electronics Chairman’s Award (2000)
- Boeing Satellite Systems President’s Honor Award and Technical Achievement (2001, 2002)
- Boeing Technical Fellow (2002)
- IEEE William Dunbar High Voltage Achievement Award (2004)
- IEPC International Electric Propulsion Conference Best Paper Award (2009)
- NASA Engineering Achievement Medal (2011)
- NASA Inventions and Contributions Award (2011)
- NASA Space Act Award (2012)
- IEEE John R. Pierce Award for Excellence in Vacuum Electronics (2014)
- AIAA Outstanding Technical Achievement Award (2014)
- Rotary National Award for Space Achievement (2015)
- NASA Space Technology Award (2015)
- JPL Magellan Award for Technical Achievement (2015)
- UCLA Engineering Alumni Professional Achievement Award (2016)
- JPL Fellow (2017)
- NASA Space Technology Award (2018)
- NASA Group Achievement Award for Hall Thruster Technology Development (2019)
- JPL Voyager Award for Outstanding Leadership in the Psyche Mission (2019)
- AIAA Electric Propulsion Best Paper Award (2005, 2012, 2013, 2019)
- ERPS International Electric Propulsion Conference Best Paper Award (2009, 2019)
- JPL Bonus Award and Team Awards (2005, 2006, 2007, 2009, 2010, 2017, 2020, 2021)
- NASA Honor Award Group Achievement Award for Psyche Project (2020)
- Electric Rocket Propulsion Society Stuhlinger Life Achievement Medal (2022)
- UCLA Engineering Alumnus of the Year Award (2024)
Patents
- High current density cathode structure U.S.#4,297,615 Oct. 27, 1981
- Plasma apparatus for materials U.S.#4,885,070 Dec. 5, 1989
- Hollow cathode plasma switch U.S.#5,132,597 July 21, 1992
- Ion implantation & processing method U.S.#5,212,425 May 18, 1993
- Plasma source for ion implantation U.S.#5,218,179 June 8, 1993
- Method of implanting ions from a plasma U.S.#5,296,272 March 22, 1994
- High-voltage crossed-field plasma switch U.S.#5,329,205 July 12, 1994
- High-speed plasma-closing switch U.S.#5,336,975 August 9, 1994
- High-impedance plasma ion implantation U.S.#5,330,800 July 19, 1994
- High repetition-rate plasma-cathode E-gun U.S.#5,537,005 July 16, 1996
- High-impedance plasma ion implantation U.S.#5,607,509 March 4, 1997
- Plasma switch with current interruption U.S.#5,608,297 March 4, 1997
- Apparatus for coating substrates U.S.#5,656,141 August 12, 1997
- Triggered plasma waveguide shutter U.S.#5,663,694 Sept. 2, 1997
- Plasma filled microwave amp and oscillator U.S.#5,668,442 Sept. 16, 1997
- Plasma assisted µwave source with B-field U.S.#5,694,005 Dec. 2, 1997
- Planar crossed-field plasma switch U.S.#5,828,176 October 27, 1998
- Low cost, compact, low frequency TWT U.S.#5,932,971 August 3, 1999
- Optimally designed TWT for back-off U.S.#5,942,852 August 24, 1999
- Efficient TWT collector U.S.#6,094,009 July 25, 2000
- Protection technique for comm TWTs U.S.#6,324.041 Nov. 27, 2001
- Compact rare earth emitter hollow cathode U.S.#8,143,788 Mar. 27, 2012
- Metallic wall Hall thrusters -1 U.S.#9,453,502 Sept. 27, 2016
- Metallic wall Hall thrusters -2 U.S.#9,874,202 Jan. 23, 2018
- Hall thruster magnetic discharge chamber U.S.#10,082,133 Sept.25, 2018
- Magnetic shielded Miniature Hall thruster U.S.#10,723,489 July 28, 2020
- Low power MS Hall thruster U.S.#10,919,649 Feb. 16, 2021
- Power train for deep space solar elec. prop U.S.#10,954,005 Mar. 23, 2021
- Heaterless hollow cathode U.S.#11,482,395 Oct. 25, 2022
- Thermally managed electric prop. systems U.S.#17/721,026 2022, pending
- High current heaterless hollow cathode U.S.# 18/339,194 2023, pending
- High power density Hall thruster CIT-8993-P submitted 4/23
- Simple gas distributor for Hall thrusters CIT-9014-P submitted 5/23
- Apparatus for coating substrates EP#463230 Dec. 10, 1990
- Plasma source arrangement EP#0480688 April 15, 1992
- Surface ion implantation EP#0480689 April 15, 1992
- Hollow cathode plasma switch EP#0506001 Sept. 30, 1992
- Grid modulated 100 kV plasma switch EP#0574933 Dec. 22, 1993
- High impedance plasma implantation EP#0596496 April 27, 1994
- High current crossed field plasma switch EP#0594087 April 27, 1994
- Triggered plasma microwave switch EP#0794588 Oct. 9, 1997
- Efficient, linear TWT for communications EP#0883154 Dec. 9, 1998
- High efficiency collector for TWTs EP#0883151 Dec. 9, 1998
- Optimally designed TWT for back off EP#0883153 Dec. 9, 1998
- Circuit for production of comm TWTs EP#1094488 April 25, 2001
- Cathode sputtering apparatus EP#0308680 March 29, 1989
- Apparatus for coating substrates EP#0463230A1 Dec. 10, 1990
- Cathode sputtering device DE#3830478 July 13, 1989
- Apparatus for thin film coating DE#4020158 Jan. 2, 1992
- Apparatus for coating substrates DE#4026367 Dec. 7, 1994
- Ion implantation and surface processing DE#69112166 Jan 4, 1996
- High-voltage crossed-field plasma switch DE#69307026 July 24, 1997
- Compact crossed-field plasma switch DE#69318506 May 13, 1998
- High-impedance plasma ion implantation DE#69324326 May 12, 1999
- Optimal entworfene Wanderfeldröhre DE#69825218 July 28, 2004
- Apparatus for Coating Material CN#1033297A Sept. 21, 1988
- Plasma source arrangement for ion implant CP#2,052,080 Jan. 14, 1997
- Ion implant. and surf processing CP#2,052,543 Jan. 28, 1997
- High-impedance plasma ion implantation CP#2,102,384 Jan. 11, 2000
U.S.=United States, EP=European, DE = German, CN=China, CP=Canadian
JPL New Technology Reports (NTRs) and NASA Tech Briefs
- NTR # 43494, 2006“Extremely high efficiency xenon ion thruster”
- NTR # 43495, 2006 “Method for doubling xenon ion thruster life”
- NTR # 43564, 2006 “Highly efficient hollow cathode for plasma and EP applications”
- NTR # 43574, 2006, “Rare-earth emitter hollow cathode for space propulsion applications”
- NTR # 44923. 2007, “Compact, High-Current Rare-Earth Hollow Cathode for Space
- NTR # 44961, 2007, “Precision Micro-Propulsion Ion Thruster”
- NTR # 46782, 2008, “Improved Rare-Earth Emitter Hollow Cathode for Space Propulsion”
- NTR # 47347, 2009, “Internal Electrostatic Discharge Monitor (IESDM)”
- NTR # 47388, 2009, “Breakthrough Hall Thruster Technology”
- NTR # 47901, 2010, “Co-Flow Hollow Cathode Technology”
- NTR # 48483, 2011. “Metallic Wall Hall Thrusters”
- NTR # 49427, 2013, “Hall Thruster with Magnetic Discharge Chamber”
- NTR # 49857, 2015, “Power control architecture for a deep space SEP mission”
- NTR # 50449, 2016, “Magnetically Shielded Miniature Hall Thruster with Internal Cathode”
- NTR # 50697, 2017, “Hall Thruster Anode Manifold High Azimuthal Prop Flow Uniformity”
- NTR # 51448, 2019, “Heaterless Hollow Cathode with Fast, Repeatable Discharge Ignition”
- NTR # 51647, 2021, "Thermally managed electric propulsion systems"
- NTR # 52391, 2022, “High Current Heaterless Hollow Cathode…”
- NTR # 52478, 2023, “High Power Density Hall Thrusters”
- NTR # 52491, 2023, “Simple Gas Distributor for Hall Thrusters”
Books and Book Chapters
- D.M. Goebel, I. Katz and I.G. Mikellides, Fundamentals of Electric Propulsion, 2nd Ed., John Wiley & Sons, NJ, 2024.
- D.M. Goebel and I. Katz, Fundamentals of Electric Propulsion Ion and Hall Thrusters, John Wiley & Sons, NJ, 2008.
- D.M. Goebel and J. Foster, Chapter 119, “Ion Thrusters”, in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shey (eds), John Wiley & Sons, UK, 2010.
- D.M. Goebel, “Gridded Ion Thrusters”, Chapter 13.3 of Advanced Materials for In-Space Propulsion, L. Johnson and T. Russell (eds.), AIAA Book Series, (2012).
- Bryan A. Palaszewski, Michael L. Meyer, Les Johnson, Dan M. Goebel, Harold White, and David J. Coote, “In-Space Chemical Propulsion System Roadmap” Chapter 7 in Chemical Rocket Propulsion, Springer, Switzerland 2017.
- D.M. Goebel, co-author of Chapter 2, “Historical Highlights”, and co-author of Chapter 7, “Communications Applications of Vacuum Electronic Devices” in Modern Microwave and Millimeter-Wave Power Electronics, IEEE Press, NY 2004.
- D.M. Goebel, co-author of Chapter 4, “Pulse Shortening and Improved High Vacuum Techniques”, Chapter 8: “Cathodes and Electron Guns”, Chapter 9 “Plasma Assisted Beam Transport”, and Chapter 10: “Plasma Loading of HPM Devices, in Advances in High Power Microwave Sources and Technologies, IEEE Press, NY 2001.
- D.M. Goebel, author of Chapter 7, “Plasma Sources”, and co-author of Chapter 8 “Pulser Technology for Plasma-Immersion Ion Implantation and Deposition”, Handbook of Plasma Immersion Ion Implantation and Deposition, Wiley, New York (Sept. 2000).
Refereed Technical Journal Publications (1st author publications while at JPL)
- D.M. Goebel and A.R. Payman, “Heaterless 300-A Lanthanum Hexaboride Hollow Cathode”, Rev. Sci. Instrum. 94, 033506 (2023); doi.org/10.1063/5.0135272
- D.M. Goebel and D.Y. Oh, “Psyche: Mission to a Metal World”, IEEE Spectrum, Vol. 59, No.2, p.24-29, (2022).
- D.M. Goebel and O.S. Filimonova, “High Voltage Solar Array Development and Testing in Space and Thruster Plume Plasma Environments,”, IEEE Trans. Plasma Sci., 50, p.721-730 (2022), doi:10.1109/TPS.2022.3147424
- D.M. Goebel, G. Becatti, I.G. Mikellides, A. Lopez Ortega, “Plasma Hollow Cathodes”, J. Appl. Physics, 130, 050902 (2021); doi: 10.1063/5.0051228
- D.M. Goebel and G. Becatti, “Compact Scanning Retarding Potential Analyzer”, Rev. Sci. Instrum. 92, 013511 (2021); doi.org/10.1063/5.0035964
- D.M. Goebel, R.R. Hofer, I.G. Mikellides, I. Katz, J.E. Polk and B. Dotson, “Conducting Wall Hall Thrusters”, IEEE TPS Special Issue on Plasma Propulsion, Vol. 43, Issue 1, pp. 118-126, (2015).
- D.M. Goebel and E. Chu, “High Current Lanthanum Hexaboride Hollow Cathode for High Power Hall Thrusters”, J. Propulsion and Power, Vol.30, No. 1, pp 35-40, (2014), doi: 10.2514/1.B34870
- D.M. Goebel, K.K. Jameson and R.R. Hofer, “Hall Thruster Cathode Flow Impacts on Cathode Coupling and Cathode Life”, J. Propulsion and Power, 28, No.2, pp.355-363, (2012).
- D.M. Goebel, J.E. Polk, I. Mikellides, “Ion Thruster Performance Impacts Due to Cathode Wear”, J. of Propulsion and Power, 27, No.4, pp. 768-775 (2011).
- D.M. Goebel and R.M. Watkins, “Compact Lanthanum Hexaboride Hollow Cathode”, Rev. Sci. Instrum., 81, 083504, (2010).
- D.M. Goebel, “Analytical Discharge Performance Model for rf Ion Thrusters”, IEEE Transactions on Plasma Science, 36, p. 2111-2121, (2008).
- D.M. Goebel, K. Jameson, I. Katz and I. Mikellides, “Potential Fluctuations and Energetic Ion Production in Hollow Cathode Discharges”, Physics of Plasmas, 14, 103508 (2007).
- D.M. Goebel, R.E. Wirz, and I. Katz, “Analytical Ion Thruster Discharge Performance Model”, Journal of Propulsion and Power, 23, No.5, p.900 (2007).
- D.M. Goebel, R.M. Watkins and K. Jameson, “LaB6 Hollow Cathodes for Ion and Hall Thrusters”, Journal of Propulsion and Power, 23, No.3, p.552-558 (2007).
- D.M. Goebel, K. Jameson, I. Katz and I. Mikellides, “Hollow Cathode Theory and Modeling: I. Plasma Characterization with Miniature Fast-Scanning Probes”, J. App. Phys., 98(11), 113302 (2005).
- D.M. Goebel and A. Schneider, “High Voltage Breakdown and Conditioning of Carbon and Molybdenum Electrodes”, IEEE Trans. Plasma Sci., 33, 1136–1148, (2005).
- D.M. Goebel, W.L. Menninger and A. Schneider, “Gain Increases Through End of Life in Traveling Wave Tubes, IEEE Trans. Electron Devices, 50, 1117-1124 (2003).
- D.M. Goebel, R. Liou, W. Menninger, X. Zhai, and E.A. Adler, “Development of linear TWT amplifiers for telecommunications Applications”, IEEE Transactions on Electron Devices, 48, 74-81 (2001).
- D.M. Goebel, “Theory of Long Term Gain Growth in Traveling Wave Tubes”, IEEE Trans. on Electron Devices, 47, 1286-1292 (2000).
- D.M. Goebel and R.M. Watkins, “High Current, Low Pressure Plasma Cathode Electron Gun”, Rev. Sci. Instrum., 71, 388-398 (2000).
- D.M. Goebel, J.G. Keller, W.L. Menninger, S. Blunk, “Gain Stability in Traveling Wave Tubes”, IEEE Transactions on Electron Devices, 46, 2235-2243 (1999).
- D.M. Goebel, Y. Carmel, G. Nusinovich, “Advances in Plasma Filled Microwave Sources”, Physics of Plasmas, 6, 2225-2232 (1999).
- D.M. Goebel, E.S.Ponti, R.W.Lemke, “Frequency and Power Response of High-Power Plasma-filled BWO Microwave Source”, Physics of Plasmas Letters, 6, 2319-2322 (1999).
- D.M. Goebel, E.A.Adler, E.S.Ponti, J.Feicht, R.Eisenhart, R.W.Lemke, “Efficiency Enhancement in High Power Microwave Oscillators”, IEEE Trans. Plasma Sci., 27, 800-808 (1999).
- D.M. Goebel, “Pulse Shortening Causes in High Power Microwave Devices”, IEEE Trans. Plasma Science, 26 263-272 (1998).
- D.M. Goebel, “Performance and Pulse Shortening in a 200 keV Pasotron Microwave Source”, IEEE Trans. Plasma Science, 26 354-363 (1998).
- D.M. Goebel, "Cold-Cathode, Pulsed-Power Plasma Discharge Switch", Rev. Sci. Instru., 67, (1996) 3136.
- D.M. Goebel, J.M. Butler, R.W. Schumacher, R.L. Eisenhart, "High Power Microwave Source Based on an Unmagnetized Backward Wave Oscillator, IEEE Trans. Plasma Science, 22, 547-555 (1994).
- D.M. Goebel, "High Power Modulator for Plasma Ion Implantation," J. Vac. Sci. Tech. B, 12, (1994) 838-842.
- D.M. Goebel, R.L. Poeschel, R.W. Schumacher, "Low Forward Voltage Drop Plasma Switch for Inverter and Modulator Applications," Rev. Sci. Instrum.64 (1993) 2312.
- D.M. Goebel, J. Bohdansky, R.W.Conn, Y.Hirooka, W.K.Leung, B. LaBombard, R.E.Nygren, G.N.Tynan, "Erosion and Plasma Redeposition of Graphite by Hydrogen Plasmas", Fusion Technology 15 (1989) 102-107.
- D.M.Goebel, et al., "ALT-II Toroidal Belt Pump Limiter Performance in TEXTOR," J.Nucl. Mat. 162-164 (1989) 115.
- D.M.Goebel, J.Bohdansky, R.W.Conn, et al., "Erosion and Redeposition of Graphite by High Density Plasma Bombardment", Nuclear Fusion 28 (1988) 1041.
- D.M. Goebel, G.A. Campbell, R.W.Conn, et al.,"Langmuir Probe Measurements in the TEXTOR Tokamak During ALT-I Pump Limiter Experiments," Plasma Physics and Controlled Fusion 29 (1987) 473.
- D.M. Goebel, Y. Hirooka, R.W.Conn, et al., "Erosion and Redeposition Experiments in the PISCES Facility," J.Nucl. Mat. 145-147 (1987) 61.
- D.M. Goebel, "Pump Limiter Experiments and Engineering," Fusion Technology 10 (1986) 761.
- D.M. Goebel, Y. Hirooka, T.A. Sketchley, "Large Area Lanthanum Hexaboride Electron Emitter," Rev. Sci. Instrum. 56 (1985) 1717.
- D.M. Goebel, Y. Hirooka, G.A. Campbell, "Large Area Lanthanum Molybdenum Electron Emitter," Rev. Sci. Instrum. 56 (1985) 1888.
- D.M. Goebel, G.A. Campbell, R.W. Conn, "Plasma Surface Interaction Facility-PISCES", J.Nucl.Mat. 121 (1984) 277.
- D.M. Goebel, R.W. Conn, "Observation of Enhanced Particle Removal Rates in Pump Limiter Simulation Experiments", J.Nucl.Mat. 128 (1984) 249.
- D.M. Goebel "Ion Source Discharge Performance and Stability", Physics of Fluids, 25, No. 6, pp.1093-1102 (1982).
- D.M. Goebel, A.T. Forrester, J.T. Crow, "Plasma Studies on a Hollow Cathode, Magnetic Multipole Ion Source", Rev. Sci. Instrum. 53 (1982) 810.
- D.M. Goebel, A.T. Forrester, S. Johnson, " Lanthanum Molybdenum Emitters in Hollow Cathodes", Rev. Sci. Instrum. 51 (1980) 1468.
- D.M. Goebel, J.T. Crow, A.T. Forrester, "Lanthanum Hexaboride Hollow Cathode for Dense Plasma Production", Rev. Sci. Instrum. 49 (1978) 469.
- D.M. Goebel, G.W. Hamilton, " Neutral Beam Injector for 475 keV MARS Sloshing Ions", in: Production and Neutralization of Negative Ions and Beams, American Institute of Physics Proc. 111 (1984) 617, re-published in Nuclear Engineering and Design/Fusion, 3 (1986).